Altweibersommer die DRITTE – 2020

(Alle Bilder Copyright fotosaurier 2020.)

Nach zwei knochen-trockenen Jahren (2018/19) im Raum Berlin hat dieser Herbst noch einmal genügend Feuchtigkeit gebracht, um einen Morgennebel zur richtigen Zeit zu produzieren.

Ohne die Nebel-Tautropfen – bei der richtigen Wetterlage – sieht man ja die Werke der Baldachinspinne kaum: den „Altweibersommer„. Am 1. Oktober war es endlich mal wieder so weit; zwar mit bescheidener Ausbeute aber immerhin sehr anregend und erkenntnisreich …

Anscheinend hatte der Tau auf den Spinnfäden schon lange gelegen bis ich das richtige „Foto-Licht“ hatte (Blitz kommt für mich nicht infrage!) – vielleicht hatten die Gespinnste auch schon vom Vortag gestanden, bis der Tau sie endlich sichtbar machte. Das Resultat sieht man auf dem ersten Bild: die „Perlenschnüre“ der Tautropfen sind nicht so regelmäßig wie sonst.

FreiOtto_DSCF0191_100%_blog

Bild 1: Unregelmäßige Tautropfen-Ketten auf den Spinnfäden des Altweibersommers. 100%-Vergrößerung aus Bild 2.

Stellenweise sind sich einzelne Tautropfen zu größeren Tropfen zusammengeflossen – gleichzeitig sind (fast immer ÜBER den großen Tau-Perlen) Lücken in den Ketten entstanden.

Bei dem nächsten Bild hatte ich eine Assoziation – und dann ein Déjà vu:

FreiOtto_DSCF0191_blog

Bild 2: Ist dies der „Baldachin“ nach dem die Baldachinspinne ihren Namen bekommen hat? Oder auch: „Zu Ehren Frei Otto, dem Architekten des Münchner Olympiastadium-Daches!

Um ehrlich zu sein: meine erste Assoziation war ein Hochzeitskleid (wohl weil wir gerade eine Hochzeit in der engeren Familie hatten). Dann fiel es mir wie Schuppen von den Augen: genau das ist der „Baldachin“ nach dem die diese Gebilde produzierende Baldachinspinne ihren Namen haben könnte.

Etwas später hatte ich dann die Assoziation mit dem Dach des Münchner Olympiastadiums / Architekt Frei Otto – ausgelöst durch eine Kolumne von Götz Aly (Historiker in Berlin und Kolumnist der Berliner Zeitung)  in der er an den – kürzlich verstorbenen – Architekten Conrad Roland erinnerte. Conrad Roland seinerseits war Kollege von Frei Otto bei der Realisierung des Olympia-Daches. (Die Kolumne finden Sie hier.) Kurz danach erfand Conrad Roland dann derartige Seilstrukturen als Klettergerüste auf Spielplätzen – wo sie sich dann in den 1970er Jahren bis heute stark durchsetzten!

Deshalb widme ich das folgende Bild 3 Conrad Roland:

Oleander1_DSCF0200_blog

Bild 3: „Zu Ehren Conrad Roland„, dem Erfinder der Klettergerüste aus gespannten Seilen.

Der Oleander ist neu in unserem Garten. Hier spannen vier Knospentriebe sozusagen ein Tetraeder auf – und die kleine Spinne hatte offensichtlich Probleme, aus dieser Geometrie wieder herauszufinden. Vielleicht ist das eine Analogie zu dem bekannten optischen Phänomen: egal aus welcher Richtung man mit einem Laser auf einen aus Glas geschliffene Tetraeder trifft: der reflektiert diesen Laserstrahl exakt in sich zurück (weshalb man mit dem auf den Mond aufgestellen Glas-Tetraeder den exakten Abstand des Mondes zur Erde messen konnte – über die Laufzeit des Lichtes hin und zurück!)

Möglicherweise finden Sie diese Assoziation etwas skurill?

Dann gehen wir doch einfach wieder zu den ästhethischen Aspekten – obwohl die Spinne natürlich keine Ahnung von unserer Ästhetik als Mensch hat …

Hier könnte die Spinne – angeregt von der klare Ästhetik der Oleander-Blätter (ja das haben Sie richtig erkannt: es sind Zweiecke!) zu einer schlichten und einfachen Struktur angeregt worden sein:

OleanderBasic_DSCF0197_blog

Bild 4: Very basic – sehr minimalistisches Spinnweben-Design, passend zum Oleander-Blatt

Neu ist in diesem Jahr 2020 gegenüber Altweibersommer 2016 und Altweibersommer 2017 (Link zu den früheren Artikeln) noch, dass ich eine andere Kamera verwende: ein Fujifilm GFX100. Mit dem verwendeten Makroobjektiv 120 mm f/4 zusammen sind das „schlappe“ 2.481 Gramm am langen Arm (ohne Objektivdeckel!). Ich brauche nun kein Fitnessstudio mehr.

Über diese beeindruckende Kamera wird noch an anderer Stelle einmal ausführlich berichtet werden.

Ich nenne die Kombination auch „mein Garten-Mikroskop„. Mit 102 Mega-Pixel gibt es hier sehr große Reserven für Detailvergrößerungen und Details die man vorher durch den Sucher nicht gesehen hat. Hier ein Beispiel:

FreiOtto2_DSCF0159_blog

Bild 5: Dieses Bild ist bereits ein Ausschnitt aus dem 102 MP-Bild von etwa einem Viertel der ursprünglichen Bildfläche.

Das folgende ist eine Teilansicht mit 100%-Vergrößerung (ein Pixel auf Ihrem Bildschirm entspricht etwa einem Pixel auf dem Kamerasensor).

FreiOtto2_DSCF0159_100%_blog

Bild 6: 100% Ansicht eines Ausschnittes aus Bild 5. Sensor-Empfindlichkeit ISO 800!

Der Sensor fügt dem Bild mindestens bis ISO 800 kein Rauschen hinzu – die Szene wirkt auch bei 100%-Vergrößerung noch überzeugend plastisch.

Ausser (kleinen) Nachjustagen an der Gradationskurve (meistens S-förmig) wurden die Bilder weder in Farbe noch in der Struktur nachbearbeitet (alle Parameter bei Aufnahme in Null-Stellung – Filmsimulation „Velvia“). Keinerlei Schärfung!

Das wirkt man bei den letzten drei Bilder für mich ähnlich überzeugend.

Dahlie1_DSCF0147_blog

Bild 6: Dahlie

Vergehen1_DSCF0143_blog

Bild 7: Rose

Dornen_DSCF0168_blog

Bild 8: … einfach ein paar Rosenblätter …

Herbert Börger

Berlin, 20. Oktober 2020

Katadioptrische Foto-Objektive und ihre „Vorfahren“, die Spiegelteleskope – Teil I

Spricht man heute in der praktischen Fotografie von „Spiegelobjektiven“ (Wechselobjektive an Systemkameras) dann sind es grundsätzlich sogenannte „katadioptrische“ Systeme, die zur Bilderzeugung nicht nur Spiegel sondern zusätzlich auch Linsen verwenden.

Derartige Abbildungssysteme gehen ursprünglich zurück auf das Spiegelfernrohr (reflecting telescope), das der Physiker Issac Newton 1668 erfand – das Newton-Teleskop. Er baute seinerzeit Geräte meines Wissens bis zu 6 Zoll (153 mm) Spiegeldurchmesser. Vom über 350 Jahre zurückliegenden Newton-Spiegelteleskop zu den katadioptrischen Fotoobjektiven der vergangenen 70 Jahre bis heute war es allerdings ein langer Weg.

Hier möchte ich für Fotoamateure, die die Entwicklung der astronomischen Fernrohre bisher nicht  so sehr im Blick hatten, eine knappe Übersicht über diese optischen Systeme geben – sowie im Teil II dann die daraus abgeleiteten Foto-Objektive beschreiben.

In der Reihe „My Crazy Lenses“ werde ich danach einige besondere katadioptrische Foto-Objektive aus meinem Fundus detailliert vorstellen.

Vorbemerkung: Mit Ausnahme einer einzigen Sonder-Bauform (s. „Schiefspiegler“) liegt bei allen Spiegelteleskopen (und katadioptrischen Systemen) der primäre Fokus (d.h. das Bild) vor dem Hauptspiegel – mitten im einfallenden Strahlenbündel. Da dort zwangsläufig die Filmkassette oder der sekundäre Fangspiegel sitzen müssen, wird daher das einfallende Strahlenbündel in der Mitte abgeschattet (man nennt das „Obstruktion„, d.h. Blockade). Das genutzte einfallende Strahlenbündel (Apertur) hat einen ringförmigen Querschnitt. Dieser Umstand verschlechtert theoretisch grundsätzlich die Auflösung des Reflektors gegenüber einem (perfekten – also apochromatischen) Refraktor (Linsenfernrohr) mit gleichem Durchmesser.

DSCF9981_crop_2400

Bild 1: Vorderansicht eines Spiegel-Linsen-Objektivs mit der typischen ringförmigen Einfallsöffnung für die Lichtstrahlen – Im Zentrum ist der Sekundärspiegel auf der Rückseite der Frontlinse befestigt (Obstruktion). (Quelle: fotosaurier)

Teil I – Astronomische Fernrohe.

Definition: Als „Optik“ bezeichnen wir hier das gesamte optische System, das ein Bild erzeugt, das man mittels Film, Videcon oder Digital-Sensor registrieren/aufzeichen kann oder auch visuell durch ein Okular betrachten kann. Bei einem „Fernrohr“ gehört das Okular, mit dem man das Bild im Fokus visuell betrachtet, NICHT zur bildgebenden Fernrohr-Optik.

Bildrechte: Alle Bilder stehen unter Copyright. Evebtuelle Lizenzrechte sind in der Bildunterschrift angegeben.

Vorteile der Spiegel-Optik:

a. Die vom Spiegel erzeugten Bilder sind prinzipbedingt ohne Farbfehler (Chromatische Aberration), da die optischen Reflexionsgesetze für alle Lichtwellenlängen gleich sind – während es bei Linsen eine wellenlängenabhängige Dispersion gibt, die aufwändig „bekämpft“ werden muss

b. Die Spiegeloptiken sind billiger herstellbar als achromatische oder erst recht apochromatische Linsen-Objektive. Insbesondere für Amateurastronomen ist dies selbstverständlich der ausschlaggebende Grund – man kann ein Spiegelteseskop für ein Taschengeld erwerben oder gar selbst herstellen. Gute Linsenfernrohre mit vergleichbaren Aperturdaten gehen dagegen richtig ins Geld und sind sehr viel schwieriger herstellbar!

c. Große Öffnungdurchmesser (mehrere Meter Öffnungs-Durchmesser!) lassen sich technisch  ausschließlich mit Spiegeln realisieren. (Meines Wissens ist nach dem großen Hale-Refraktor mit 102 cm Apertur am Yerkes-Observatorium in USA von 1897 kein größeres Linsentelsekop mehr gebaut worden.)

d. Da in allen Spiegelsystemen außer dem Newton-Fernrohr und seinen Varianten (besonders auch der Schmidt-Kamera) der Strahlengang „gefaltet“ wird – also die Lichtstrahlen den Weg zwischen zwei Spiegeln insgesamt zwei oder drei mal durchlaufen ehe sie zum Fokus gelangen! – sind diese Geräte meist sehr viel kürzer gebaut als Linsenfernrohre („Refraktoren“).

Nachteile der Spiegel-Optik:

a. Spiegelobjektive haben einen festen Blendenwert – sie können nicht „abgeblendet“ werden. Wer sich entschieden hat, mit einem solchen Objektiv zu arbeiten, weiß das natürlich vorab. Dennoch erfordert es eine Anpassung der Arbeitsweise. Man muss eben auch wissen, dass man mit einer gewissen Schärfentiefe zurecht kommen muss und diese nicht mehr beeinflussen kann. Ich halte das aber nicht für gravierend: da die Spiegelobjektive sich ja nicht so sehr durch hohe Lichtstärke hervortun (f/4 ist ein Lichtriese in diesem Bereich, f/5,6-f/8 der Standard!) und die Brennweite nach kurzen Belichtungszeiten verlangt, ist „Abblenden“ wohl eher der seltenerer Wunsch. Wenn das Licht reduziert werden soll, werden für katadioptrischen Objektive ja meist die ND-Filter im Strahlengang angeboten. Mit den Digitalkameras von heute haben wir außerdem nun den Vorteil, dass wir den ISO-Wert in sehr weitem Bereich variieren können, um die Belichtungssteuerung zu unterstützen (sogar ohne nennenswerte Bilddefinition zu verlieren).

Generell wäre aus Sicht eines astronomischen Instrumentes das Reduzieren des einfallenden Strahlenbündeldurchmessers kontraproduktiv, da damit die erzielbare Auflösung sinken würde. Deshalb ist der Weg über Neutraldichte Filter der physikalisch sinnvolle.

b. Der größte Nachteil liegt in der „Obstruktion“ im Zentrum der  Öffnung, wie oben in der Vorbemerkung beschrieben. Das Spiegelobjektiv hat dadurch bedingt bei gleichem Öffnungsdurchmesser theoretisch immer eine geringere Auflösung im Fokus als ein Refraktor bzw. ein Linsen-Teleobjektiv mit höchster apochromatischer Korrektur! Auch die Kontrastwiedergabe ist dadurch reduziert. Dieser Nachteil wird ggf. dadurch kompensiert, dass das kostengünstigere (und sehr kurz bauende) Spiegelobjektiv mit entsprechend größerem Öffnungsdurchmesser verwendet wird, wodurch der Auflösungsverlust kompensiert werden kann. Das gilt nach dem oben Beschriebenen natürlich nicht für die Schiefspiegler.

c. Bei terrestrischem Einsatz als Teleobjektiv für normale fotografische Zwecke, entsteht ein weiterer Nachteil aus der Obstruktion. Wegen der ringförmigen Eintrittsöffnung für die Lichtstrahlen, entstehen außerhalb der Fokusebene nicht die bekannten Unschärfebilder eines Lichtpunktes in Form einer Kreisscheibe, die in ihrer Fläche weitgehend gleichmäßig hell ist, sondern ringförmige Unschärfebilder. Bei Anwendungen in der Astronomie tritt dieses Phänomen nicht auf, da alle Objekte – gleich ob sie 384.400 km oder 1 Millionen Lichtjahre entfernt sind  – praktisch „unendlich“ weit entfernt sind! Bei der Benutzung als Teleobjektiv bei normalen fotografischen Anwendungen sind aber selten alle Bildpunkte in einer Ebene, sondern es gibt auch Bereiche vor und hinter der Schärfeebene. In diesen treten leuchtende Punkte als die beschriebenen Ringe auf – normale Objekte bekommen als unscharfes Bild eine unruhige bzw. abstrakte Struktur. So wird ein Zweig im Hintergrund nicht einfach als ein „unscharfes Bild des Zweiges“ wiedergegeben, sondern er wird in zwei unscharfe Bilder aufgespalten, die sich überlagern. Das alles ist nicht immer bildnerisch schön.

DSC06249_A7r4_OM500f8_Ringe_blog

Bild 2: Außerfokale „Unschärfe-Ringe“ (von Reflexen – wie hier im Bild – und Lichtquellen) im Spiegel-Linsenobjektiv (Olympus OM 500mm f8). Über Ästhetik kann man streiten … Warum die Ringe in den Eckenbereichen nicht mehr geschlossen sind, werde ich im Teil II erläutern. Quelle: fotosaurier

DSCF9957_toproof_RF250f5,6_100%

Bild 3: „Unruhiger“ Hintergrund im Bild mit dem katadioptrischen Objektiv (Minolta RF 250mm f5.6), verursacht durch die „Obstruktion“ – Quelle: fotosaurier

Rubrik I. Spiegel-Optiken für die Astronomie

Die reinen Spiegel-Optiken ohne zusätzliche Korrektur-Linsen sind praktisch fast ausschließlich auf den Einsatz bei (meist astronomischen) Fernrohren beschränkt. Ich werde sie hier dennoch ausführlich behandeln, weil sie sozusagen die „Mütter der gesamten Geräteklasse“ sind. Interessant ist der Umstand, dass innerhalb von nur vier Jahren um 1670 herum alle drei grundlegenden Spiegeloptik-Typen erfunden wurden – Typ 3a ist dabei nur eine (sehr wesentliche!) Verbesserung des Grundtyps 3.

Typ 1: Der Newton-Reflektor:

Der von Isaac Newton 1668 erfundene und realisierte einfache bildgebende Hohlspiegel (aus Metall oder verspiegeltem Glas … oder aus flüssigem Quecksilber) wurde zunächst ausschließlich für visuelle Beobachtungen eingesetzt. Der Fokuspunkt liegt am Lichteintritt in das Teleskoprohr – mitten im einfallenden Strahlenbündel. Um das Bild zugänglich für Beobachtungen zu machen, wird ein planer Fangspiegel unter 45° vor dem Primärfokus im Strahlengang platziert, sodass der Strahlengang unter 90° seitlich aus dem Fernrohrtubus herausgeführt wird. Der Fangspiegel erzeugt die Obstruktion – also die Abschattung in der mitte des Lichtbündels. Beim Newton-Teleskop ist die Obstruktion generell am geringsten von allen Spiegelfernrohr-Typen.

Bild 4: Newton Teleskop, Strahlengang. Dies ist – bis heute –  das beliebteste (und kostengünstigste) astronomische Fernrohr für Amateur-Astronomen. Den Hauptspiegel kann ein Amateur sogar selbst herstellen. (Qelle: Wikipedia – Autor Krishnavedala, https://creativecommons.org/licenses/by-sa/4.0)

Mit Auftreten der Fotografie, wurde später oft anstelle eines 45°-Fangspiegels genau in der Fokusebene eine Filmkasette (für Planfilm oder Glasplatten) im Fernrohrtubus positioniert. Ein schneller Verschluss ist dazu meist nicht notwendig, da die Belichtungszeiten eher sehr lang sind! Das ergibt eine Newton-Astrokamera, die mit einem Leitfernrohr geführt werden muß.

Der ideale Newton-Reflektor besitzt einen parabolischen Hauptspiegel. Präzise geschliffen liefert er punktförmige Sternbilder in der Bildmitte. Die Bildfläche ist gekrümmt. Bei größerem Bildfeld erhebliche Koma. Es werden deswegen Okulare speziell für die Nutzung am Newton hergestellt, die Koma korrigieren.

Newton verwendete noch einen sphärischen Hauptspiegel, der allerdings das gesammelte Licht nicht in einem Punkt, sondern auf eine „Katakaustik“ verteilt als leicht unscharfe Scheibe darstellt. Auch die kleinen billigen Spiegelfernrohre in unserem Handel heute – mit Spiegeldurchmessern von 3 Zoll bis 4,5 Zoll – haben meist nur sphärisch geschliffene Spiegel. Bereits Gregory soll auf die Vorzüge des parabolischen Spiegels hingewiesen haben, der aber erst ab 1721 nachweislich von John Hadley mit den dafür benötigten Schleif-Polier-Methoden eingeführt wurde. Schnell entstanden dann große Instrumente mit über 1 m Durchmesser (W. Herschel). So hat tatsächlich das Spiegelteleskop nach Newton und Hadley der astronomischen Forschung die größten Fortschritte im 18./20. Jahrhundert ermöglicht.

Bild 4a: Hooker-Teleskop Mt.Wilson (Newton mit 2,5 Meter Spiegeldurchmesser) – von 1917 – 1949 das größte Teleskop der Welt – wie es mit der Entwicklung der Großteleskope weiter ging kann man hier lesen.

Der Parabolspiegel hat eine praktisch perfekte Abbildung in der Bildmitte. (Eine Begrenzung der Auflösung ist bei erdgestützten Instrumenten grundsätzlich der Luftbewegung/den Luftschlieren,  genannt „Seeing“, zuzuschreiben – weniger der optischen Qualität des Spiegels.) Allerdings ist der Newton für größere Bildfelder nur eingeschränkt nutzbar, da außeraxial Astigmatismus und vor allem Koma auftreten.

Mit Hadleys Innovation war der Weg des Newton-Reflektors aber noch längst nicht zuende:

Allerdings dauerte es dann noch einmal über 200 Jahre (!) bis das Newton-Teleskop mit einer optischen Innovation aufgewertet wurde: mit der Erfindung der asphärischen Korrektorplatte durch Bernhard Schmidt 1930 – die Schmidt-Platte. Die daraus resultierende Schmidt-Kamera wurde sofort zum bedeutendsten Instrument für die Durchmusterung des Sterenenhimmels weltweit. Das fehlerfreie Bildfeld ist dramatisch erweitert – der Spiegel darf sogar sphärisch bleiben! Die Schmidt’sche Innovation kann man gar nicht hoch genug einschätzen – und sie wurde erbracht von einem einzelnen Selfmade-Spiegelschleifer (mit einem abgebrochenen Studium …) – und nicht durch die systematische Forschung in großen Optik-Firmen wie Zeiss! Haarstäubend darüberhinaus: Schmidt erfand nicht nur die Form der asphärischen Platte, sondern das elegante Herstellverfahren gleichzeitig!

Bild 5: Schmidt-Newton-Teleskop, Strahlengang (Quelle: Wikipedia – Autor: Tamasflex, https://creativecommons.org/licenses/by-sa/3.0). Als Hauptspiegel kann ein Kugelspiegel verwendet werden.

Allerdings ist das dann kein reines Spiegelobjektiv mehr – und gehört in die Rubrik der katadioptrischen Systeme (s.u.).

Typ 2: Gregory-Teleskop:

1670 – zwei Jahre nach Newtons Erfindung – schlug der schottische Mathematiker James Gregory (*1638) eine „geradsichtige“ Spigeloptik aus zwei Hohlspiegeln vor:

Bild 6: Gregory-Teleskop, Strahlengang (Quelle: Wikipedia – Autor Krishnavedala, https://creativecommons.org/licenses/by-sa/4.0)

Durch den Sekundärspiegel wird der Sekundärfokus durch eine Öffnung im Primärspiegel hinter den Hauptspiegel projiziert. Man blickt in die Richtung des Zieles – und das Bild ist seitenrichtig und aufrecht! Das erste Gerät wurde 1674 prakisch realisiert und bis ca. 1800 wurde diese Gerätebauweise sehr intensiv genutzt.

Nachteile sind: die wesentlich längere Bauweise als z.B. beim Cassegrain und der größere Sekundärspiegel, der die Obstruktion vergrößert.

Der Primär-Hohlspiegel ist parabolisch, der Sekundär-Hohlspiegel – VOR dem Primärfokus gelegen! – ist elliptisch. Primärfokus und Sekundärfokus liegen in den beiden Brennpunkten des Spiegel-Ellipsoids.

Der größte Vorteil des Gregory-Spiegelsystems für ein Fernrohr ist die Zugänglichkeit und Nutzbarkeit des Primärfokus bei eingebautem Sekundärspiegel. Dies führte dazu, dass auch bis in die jüngste Zeit das Gregory-Prinzip immer noch eingesetzt wird, z.B. bei dem wohl derzeit modernsten Spiegelteleskop weltweit: das deshalb auch zu Ehren des Erfinders gleich GREGOR-Teleskop genannte, 2012 in Betrieb genommene Solarteleskop des Kiepenheuer-Instituts für Solarphysik auf den Kanarischen Ineln. Hauptspiegeldurchmesser 1,5 m. Das Instrument ist vollgepackt mit Innovationen und nutzt (mit einem Tertiärspiegel hinter dem Hauptspiegel) die extrem gute simultane Zugänglichkeit zu dem Strahlengang dazu, ohne Umbau und gleichzeitig eine ganze Reihe von Analysengeräten durch ein Teleskop zu füttern. Der Hauptspiegel ist temperiert und besteht aus einer adaptiven Optik, die die störenden Einflüsse der Atmosphäre auf das Licht ausgleichen kann.

Beim großen Radioteleskop in Effelsberg wird das Gregory-Prinzip ebenfalls verwendet.

Newton- und Gregory-Teleskope sind vorrangig auf kurze Brennweiten und hohe Lichtstärken ausgerichtet.

Typ 3: Cassegrain-Teleskop:

Laurent Cassegrain (*1629) stellte das Teleskop 1672 vor.

Es ist ebenfalls geradsichtig und verwendet entsprechend eine zentrale Öffnung im Hauptspiegel, um den Sekundärfokus hinter den Hauptspiegel zu projizieren.

Der Primärspiegel ist wie beim Newton ein parabolischer Konkav-Spiegel. Der zwischen Primärfokus und Hauptspiegel liegende Sekundärspiegel ist ein hyperbolischer Konvex-Spiegel, dessen Brennpunkt im Primärfokus liegt. Dadurch ergibt sich eine sehr lange Brennweite bei sehr kurzer Bauweise!

Bild 7: Cassegrain-Teleskop, Strahlengang. (Qelle: Wikipedia – Autor: Krishnavedala, https://creativecommons.org/licenses/by-sa/4.0

Cassegrain-Spiegelteleskope sind auf längere Brennweiten bei typisch f/10 und größer ausgerichtet. Gerade wegen der kompakten Länge basiert wohl die große Mehrheit der modernen Spiegelteleskope auf der Bauweise. Das Prinzip erzeugt als reine Spiegeloptik nicht vernachlässigbare optisch Restfehler – besonders bei größeren Bildfeldern. Daher sind heute die meisten eingesetzten Cassegrain-Systeme katadioptrische Systeme, in denen asphärische Korrektoren (Schmidt-Platte) oder Linsengruppen die wichtigsten Fehler korrigieren: Öffnungsfehler, Koma und Bildfeldkrümmung – oder man setzt heute gleich auf den Typ 3a:

Typ 3a: Richey-Chrétien-Cassegrain-Teleskop

Der RC-Cassegrain-Teleskop (abgekürzt) wurde von George Willis Ritchey (*1864) und Henri Chrétien (*1879) Anfang des 20. Jahrhunderts aus dem Cassegrain-Grundtyp entwickelt. Die Schmidt-Platte war zu diesem Zeitpunkt noch nicht bekannt. Ziel war die Eliminierung der optischen Restfehler, die das nutzbare Gesichtsfeld des Cassegrain doch sehr deutlich einschränkten.

Die weitgehende Korrektur der wichtigsten Bildfehler  erfolgte durch die Optimierung der Asphären-Gestalten BEIDER Spiegel (zusammen mit dem Abstand).

Bild 8: Richey-Chrétien-Cassegrain-Teleskop, Strahlengang. (Quelle: Wikipedia – Autor ArtMechanik, http://creativecommons.org/licenses/by-sa/3.0/)

(Leider „Chrétien“ im Bild nicht korrekt geschrieben….)

Das Bildfeld des RC-Cassegrain-Systems kann bis zu 3-fach größer sein als das des Standard-Cassegrains.

Dabei blieb die Bildfeldkrümmung bestehen, da sie mit Spiegeln alleine nicht eliminiert werden kann – dazu wurden in der Folge Bildfeldebnungs-Linsensysteme hinter dem Sekundär-Spiegel verwendet – aber diese RC-Systeme gehören dann zu den katadioptrischen Systemen.

Diese Entwicklung war entscheidend für die Zukunft des Cassegrain-Systems: alle bedeutenden Großteleskope sind heute RC-Cassegrains – ebenso das erfolgreiche Hubble-Weltraumteleskop (2,4 m Durchmesser)!

Ein kurzer Exkurs zu den bemerkenswerten Erfinderpersönlichkeiten Ritchey und Chrétien:

Beide Männer waren geniale Optik-Ingenieure – wenn auch mit total unterschiedlichem Hintergrund.

Der Amerikaner Ritchey war ein handwerklich begnadeter Optik-Ingenieur, der in Zusammenarbeit mit dem berühmten Astrophysiker Hale z.B. die beiden großen Spiegelinstrumente für das Mount-Wilson-Observatorium baute (1,5 m und 2,5 m). Nach einem Zerwürfnis mit Hale zog er sich zunächst zurück, wurde aber aufgrund seines Weltruhmes als Instrumentenbauer nach Frankreich gerufen, wo er zusammen mit Chrétien (wohl um 1920 herum sieben Jahre lang) an Cassegrain-Spiegelsystemen arbeitete. Chrétien war seinerseits ein genialer Mathematiker und Optiker auf der wissenschaftlich-mathematischen Seite. Gemeinsam lösten sie die Bildfehler-Probleme des Cassegrain-Teleskops – nachhaltig, wie man heute weiß!

Chrétien war darüber hinaus der Erfinder des Breitbildverfahrens (Anamorphot-Optiken / Cinemaskop – wofür er kurz vor seinem Tod noch einen Technik-Oskar erhielt) und er war der Mentor von Pierre Angénieux! – hier schließt sich für mich ein Kreis: sehen Sie meine Texte zu Leben, Werk und Produkte von Pierre Angénieux.

Nach beiden Männern sind Mondkrater benannt – nach Richey auch ein Marskrater – nach Chrétien ein Asteorid.

Typ 4: Schiefspiegler – englisch als TCT bezeichnet: „Tilted Component Telescope“

Ich habe schon erwähnt, dass für lichtstarke astronomische Instrumente im Amateurbereich vorwiegend Spiegelinstrumente – besonders das Newton Teleskop – eingesetzt werden. Dabei spielt die Herstellbarkeit im Selbstbau eine große Rolle.

Immer wieder haben sich aber engagierte Amateure nicht damit abfinden wollen, dass die Auflösung (auf der Achse!) der Geräte durch die erhebliche Obstruktion (vor allem beim Cassegrain!) stark beeinträchtigt wird.

Schon Wilhelm Herschel hatte im Newton-Teleskop mit einem gekippten Hauptspiegel experimentiert, bei dem das Bild ohne Fangspiegel im Strahlengang seitlich außerhalb des Fernrohrtubus betrachtet werden konnte. Er konnte aber die dabei auftretenden großen Bildfehler nicht überwinden.

Typ 4a: Kutter-Schiefspiegler

Bild  9: Schiefspiegler nach Anton Kutter. (Quelle: Wikipedia – Von User:Eudjinnius – Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2116871)

Typ 4b: Jolo-Schiefspiegler

Bild 10 : Der Jolo-Schiefspiegler – Quelle: Wikipedia – Von Gengeli – Eigenes Werk, Gemeinfrei, https://commons.wikimedia.org/w/index.php?curid=11277032

Typ 4c: Multi-Schiefspiegler

Multischiefspiegler_EP0964283A1_Wolter Kopie

Bild 11: Multi-Schiefspiegler nach Wolter: Drei Spiegel, wobei der 2. Spiegel 2-mal benutzt wird! – Quelle: EP0964283A1

Viele der Designer von Schiefspieglern sind kundige und erfahrene Amateur-Astronomen, die ihre Geräte selbst bauen. Es darf aber nicht der Eindruck entstehen, dass das Schiefspiegler-Prinzip in der wissenschaftlichen Astronomie keine Rolle spiele: es ist zwar ein „Exot“ aber es wird, wenn das sinnvoll ist – bis heute sogar bei Großteleskopen eingesetzt:

So wurde mit dem „Leviathan“ des 3. Earl of Ross in Irland von 1845 an immerhin die Spiralstrutur ferner Galaxien entdeckt! Bis 1917 war es mit 1,8 m Spiegeldurchmesser das größte je gebaute astronomische Instrument – und ein Schiefpiegler. Das größte – gerade in Betrieb genommene – Sonnenteleskop auf Hawaii (DKIST – Apertur 4 Meter!) ist ein Schiefspiegler – und jetzt natürlich mit adaptiver Optik! Und es wird geplant, am mit 6 Meter Apertur (f/1.5) größten Zenith-Spiegel-Teleskop in Kanada (LZT) eine Schiefspiegler-Option zu installieren um das normalerweise nur 24 Bogenminuten betragende Bildfeld auf +/-23° zu erweitern! Der Spiegel ist ein rotierender Topf, in dem flüssiges Quecksilber einen Parabolspiegel-Fläche bildet.

Bild 12: Der parabolische Newton-6 m-„Spiegel“ aus flüssigem Quecksilber des LZT in Kanada – am Winkel der aufsteigenden Streben sieht man, wie nah der Sensor im Spiegelfokus ist: Öffnungsverhältnis f/1,5 !!! Quelle; Wikipedia – Autor: NASA – Lizenz Gemeinfrei

In diesem Wikipedia-Artikel bekommt man einen Eindruck, dass es da einen großen Zoo von verschiedensten TCT-Lösungsvarianten gibt. Auf dieser Web-Site kann sich informieren, wer an Details der geometrischen Optik interessiert ist.

Zum Schluss die Anmerkung, dass in den 1960/70er Jahren (eine genaue Datierung war mir bisher nicht möglich) einmal tatsächlich versucht wurde, ein reines Spiegelinstrument für normale Fotozwecke als Wechselobjektiv an SLR-Kameras auf den Markt zu bringen:

Es war ein Schiefspiegler mit der Brennweite 500 mm f/8 bzw f/11 (mit einstellbarer Blende und motorischer Scharfeinstellung!), der in  drei unterschiedlichen mechanischen Ausführungen als „Meta Makowsky Katoptaron TSE 1:8/500“ und „Geoma Katoptar TS 8/500 E“ oder „Telespect 500 1:11„angeboten wurde. Hier sieht man Details und Spezifikationen eines der Geräte. Die Geräte gingen wohl alle auf das 1968 erteilte Patent des Erfinders Makowsky zurück.  Tatsächlich war das Gerät in der Lichteinfall-Apertur völlig offen und enthielt nur zwei Spiegel, eine Fokussiereinrichtung und eine Blende. Ich las darüber einen Test, der wenig Begeisterung widerspiegelte. So weit ich weiß war das ein einmaliger und auch gescheiterter Versuch, ein reines Spiegelinstrument für normale Fotozwecke zu lancieren.

Fazit: Reine Spiegelobjektive sind ausschließlich astronomische Instrumente!

Jedenfalls ist mir keines von den oben dargestellten Spiegel-Optik-Typen als „echtes“ (und erfolgreiches) Foto-Objektiv bekannt, obwohl man natürlich damit auch fotografieren kann – und es am Sternenhimmel auch tut.

Will man die typischen Bildfehler wie Koma und Bildfeldkrümmung – insbesondere für große Bildfelder – bekämpfen, dann landet man schnell bei einem katadioptrischen System. Kein 1- oder 2-Spiegelsystem kann gleichzeitig alle Bildfelder und die Bildfeldkrümmung eliminieren. RC-Cassegrains und Schiefspiegler sind vermutlich das Beste, was ausschließlich mit (passiven) Spiegeln erreicht werden kann. Um noch weiter zu kommen, fügt man Linsen-Korrektoren hinzu.

Diese Aussage ist allerdings in den Zeiten der sog. „adaptiven“ Spielgeloptik teilweise überholt, jedenfalls für große Instrumente, bei denen der immense Aufwand der adaptiven und segmentierten Spiegle leistbar ist. Für unser eigentliches Thema – die Foto-Objektive – sind wir derzeit von diesem Thema aber noch sehr-sehr weit entfernt (was nicht so bleiben muss …).

Rubrik II. Katadioptrische Systeme für die Astronomie

Welche Gründe gab es dafür, die Spiegeloptik mit Linsen („Korrektoren“) zu ergänzen?

  1. Kombinationen aus Linsen und Spiegeln entstanden weitgehend mit dem Ziel, das Bildfeld der Fernrohre mit hoher Abbildungsgüte zu vergrößen. Die Abbildungsqualität eines Newton-Teleskops mit parabolischem Spielgel ist auf der Achse perfekt – aber das Bildfeld mit akzeptabler Abbildungsleistung ist nicht größer als 0,25°.
  2. Herstellung hermetisch geschlossener Geräte zum Schutz gegen Staub, Spritzwasser und korrosive Gase, die auf Dauer die Spiegelflächen angreifen und degradieren können.
  3. Mechanische Robustheit generell.

Korrektor-Linsen in Katadioptrischen Instrumenten können

a) die volle Öffnung (Apertur) ausfüllen (Schmidt-Platte oder Maksutov-Meniskus)

b) oder im hinteren Strahlengang auf die schlanker gewordenen Strahlenquerschnitte wirken – dann werden sie „Sub-Apertur-Korrektoren“ genannt

Wir werden später bei den Foto-Objektiven sehen, dass dort meist BEIDE Verfahren gleichzeitig eingesetzt werden, um befriedigende Ergebnisse zu erzielen.

Typ 5: Schmidt-Kamera auf Basis eines sphärischen Spiegels

Bild 13:  Die Apertur der Kamera ist der Durchmesser der Korrektor-Platte links. Der sphärische Spiegel ist stets deutlich größer. Länge ist zweimal die Brennweite. Die Bildebene ist sphärisch gekrümmt. Typisches Öffnungsverhältnis f/2.     Quelle: Wikipedia, Autor: ArtMechanik – http://creativecommons.org/licenses/by-sa/3.0/

Bild 14: Asphärische Form der Schmidt-Platte – Schnitt entlang des Durchmessers. Die genial-elegante Herstell-Methode fiel auch Bernhard Schmidt ein: die ebene Glasplatte wird mittels Vakuum vorgespannt und in diesem Zustand wird einseitig eine Fläche eingeschliffen und poliert: nach dem Entspannen der Platte ist die passende asphärische Kontur wie im Bild dargestellt entstanden. Quelle Wikipedia – Autor: Flying Jacket http://creativecommons.org/licenses/by-sa/3.0/

1930 erfunden vom deutschen Optik-Ingenieur Bernhard Schmidt. Die asphärische Korrektur-Platte korrigiert den Öffnungs-Fehler des Kugelspiegels. Großes Bildfeld, aber die Fokus-Ebene ist gewölbt! Dazu kann z.B. ein Planfilm auf eine spärisch geformte Aufnahme mit Vakuum angesaugt werden. Die Kamera hat cirka die doppelte Länge der Brennweite. Der Spiegel ist deutlich größer als die Korrektor-Platte bzw. die Apertur-Blende – abhängig von der Größe des Bildfeldes, das man auszeichnen möchte. Dies ist seit den 1930er Jahren weltweit das wichtigste Instrument, mit dem der Sternenhimmel weltweit systematisch durchgemustert wird (Hamburger Schmidt-Kamera 1954 (Planung ab 1937) mit Apertur 80 cm, das berühmteste ist wohl der große Schmidt-Spiegel am Palomar-Observatorium mit 1,22 m Öffnung und 1,8 Meter Spiegel (1948). Weniger bekannt dürfte den meisten das folgend dargestellte Instrument sein – in JENER Zeit (um 1960) war die Optik-Industrie der DDR konkurrenzfähig auf Weltniveau – wenn nicht führend:

Bild 15: Größte Schmidt-Kamera der Welt in Tautenburg, Thüringen, D (Alfred-Jensch-Teleskop) – Apertur 1,34 m, Spiegeldurchmesser 2,00 m f/2,0 (gut, dass ein Mensch hinter der „Kamera“ stand! Das stellt den Maßstab her …) – erstellt 1960 von Carl Zeiss Jena.

Bemerkung: das heute nach Schmidt benannte Prinzip war bereits 1924 vom finnischen Physiker Yrjö Väisälä entdeckt – aber wegen der sphärischen Bildebene wieder verworfen worden. V. hat später sub-aperture Bildebnungskorrektoren für die Schmidt-Kamera entworfen.

Typ 5a: Schmidt- Newton Teleskop

Bild 16: Schmidt-Newton Teleskop mit dem an der Schmidt-Platte angebrachten 45°-Fangspiegel. Quelle: Wikipedia – Von Szőcs Tamás Tamasflex – Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8622001

Die Öffnungsblende mit der Schmidt-Platte rückt hier wieder nahe am Diagonalspiegel (VOR dem Brennpunkt) liegt. Der Vorteil des sehr großen Bildfeldes geht dabei größtenteils verloren, aber die Koma und Astigmatismus am Bildrand sind gut korrigiert. Das Bildfeld bleibt (ohne zusätzlichen Linsen-Korrektor) gekrümmt. Vorteil: mit der Korrektor-Platte als Träger entfallen die Beugungen an der Tragspinne für den Diagonalspiegel. Gleiches gilt für die folgende Cassegrain-Variante 5b).

Diese Version scheint es zur Zeit aber als kommerziell gefertigte Amateurinstrumente nicht auf dem Markt zu geben. Es werden wohl derzeit katadioptrische „Newton-Astrographen“ mit hoher Lichtstärke (um f/3) bevorzugt, bei denen alle Bildfehler inclusive Bildfeldkrümmung durch  „Sub-Apertur“-Korrektoren direkt vor dem Okular beseitigt werden. Dann auch nicht mehr ganz billig … (Hauptspiegel dann wohl meist hyperbolisch!)

Typ 5b: Schmidt-Cassegrain Teleskop

Bild  17: Schmidt-Cassegrain-Teleskop – Qielle: Wikipedia – Von Szőcs Tamás Tamasflex – Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8632917

Dies ist heute eines der am weitest verbreiteten Amateur-Instrumente (bis 16″ oder 20″ Apertur im Extremfall) mit Öffnungsverhältnisen meist um f/10 herum. Es ist weniger kurz bauend als das Maksutov-Cassegrain-Teleskop, hat aber dafür ein größeres fehlerfreies Bildfeld.

Typ 5c: Flat-Field-Kameras mit Schmidt-Platte (Lichtenknecker)

Auch als Zweispiegelsystem bezeichnet. Ein konvexer Sekundärspiegel wirft das Bild durch eine Hauptspiegelbohrung in den zugänglichen Bereich hinter dem Hauptspiegel. Das Bildfeld ist eben.

Typ 5d:Super-Schmidt-Kameras

Die Kreativität der Optik-Ingenieure im 20. Jh. war hier fast grenzenlos. Sehr viele Varianten wurden entwickelt, um immer leistungsstärkere Schmidt-Kameras zu schaffen, meistens mit Aperturen zwischen 500 und 800 mm und Öffnungsverhältnissen bis zu f/0,67 ! Es wurden zum Beispiel zwei Menisken hinzugefügt die die Schmidt-Platte zwischen sich einschlossen.

Hier finden Sie ein Beispiel – die Hewitt Camera mit 630 mm Öffnung und Spiegeldurchmesser von 864 mm (f/1, Bildfeld 10°), die man in England sogar heute offentlich besichtigen kann.

Diese Kameras wurden meistens für Kometen- oder Asteoridensuche oder Vermessung von Satellitenbahnen eingesetzt (woraus man Erkenntnisse über dias Gravitationsfeld der Erde gewinnen kann …).

Typ 6: Maksutov-Teleskop

Das heute als Maksutov-Prinzip bekannte System wurde um das Jahr 1941 gleich drei mal erfunden – und zwar nachweislich unabhängig voneinander, da wegen des 2. Welt-Krieges Wissenschaftler oft nichts von den Arbeiten anderer Wissenschaftler wussten: Dimitri Maksutov (Sowjetunion), Albert Bouwers (Niederlande), Kurt Penning (Deutschland) und Denis Gabor (Ungar, der Erfinder des Hologramms!). Alle verwenden die Meniskus-Korrektor-Linse auch als Träger des Sekundär-Spiegels in leicht unterschiedlichen geometrischen Konfigurationen mit dem Hauptspiegel.

Wenn man allerdings nachvollzieht, wie intensiv Maksutov bereits seit 1929 in der Sowjetunion an seiner Lösung gearbeitet hatte und dass er fast alle denkbaren Konfigurationen (46 aus seinen Unterlagen bekannte, berechnete Varianten) schon selbst durchgespielt hatte, erscheint die Ehrung seines Namens für dieses optische Prinzip durchaus angemessen! Außerdem ist er der einzige, der schließlich zuerst die Massenfertigung kleiner Maksutov-Cassegrain-Teleskope angestoßen hat und selbst eine große MAK-Kamera (700 mm Öffnung), das AZT-16 auf dem Cerro El Roble in Chile, bauen konnte (Doppelmeniskus-Korrektor, Apertur 700 mm, f/3, Spiegeldurchmesser 1 m). Ein Bild des Teleskops finden sie hier.  Ähnlich große Maksutov-Kameras gibt es auch im Hohen Kaukasus und auf der Krim.

Typ 6a: Maksutov-Newton Teleskop

Relativ preiswerte Variante (alle Flächen sphärisch!) mit einer für Maksutovs hohen Lichtstärke bei f/4 – f/5 und wegen der geringen Obstruktion durch den Sekundär-Diagonalspiegel hoher Kontrast. Allerdings nicht so kurz bauend wie die typischen Mak-Cassegrains (s. 6b)). Nachteil für Astro-Anwendung ist die geschlosene Bauweise, daher meis mit Schlitzen an der Korrektor-Meniskus-Peripherie ausgestattet.

Typ 6b: Maksutov-Cassegrain-Teleskop

Bild 18: Maksutov-Cassegrain-Teleskop, wird in dieser Konfiguration oft als Spot- oder Gregory-Maksutov-Cassegrain bezeichnet. Stammt aber genau so aus Dimitri Maksutovs Entwürfen – Quelle: Wikipedia – Autor: Halfblue – http://creativecommons.org/licenses/by-sa/3.0/.

Dies ist schlechthin DER Klassiker unter den astonomischen Amateur-Instrumenten – kompakt und stabil – mit Öffnungsverhältnis meist ab f/10 oder höher. Bereits ab 1945/46 wurden die Geräte unter D. Maksutovs kritischem Auge (mit Apertur 70 mm f/10) in der Sowjetunion in Massen produziert und an die Schulen des riesigen Landes geliefert! Kostengünstig (alle Flächen sphärisch) und stabil – und für den Einsatz in den Schulen war es Maksutov sehr wichtig gewesen, ein GESCHLOSSENES System zu schaffen, um Staub und Korrosion an den Spiegeln zu minimieren! Und das ist auch der Grund, weshalb es sich ab den 1950er Jahren weltweit als Foto-Teleobjektiv so stark durchsetzen konnte und noch bis heute gefertigt wird. Diese Hersteller liegen heute in der Ukraine und in Russland.

Ab 1954 wurden derartige Amateur-Instrumente, die auch als Teleobjektive für normale Fotografie geeignet waren, im Westen von der Firma QUESTAR geliefert (hier nenne ich ausnahmsweise einen Firmen-Namen eines Teleskop-Herstellers wegen des Pioniercharakters des Produktes außerhalb der Sowjetunion).

Typ 6c: Rutten-Maksutov-Cassegrain

Bild 19: Rutten-Maksutov-Cassegrain

Der Vorschlag des Niederländischen Optik-Designers Harrie Rutten  zielt darauf, dass für den Sekundärspiegel im Maksutov-System bis zu drei zusätzliche Freiheitsgrade möglich sind: a) ein anderer Krümmungsradius als die Rückseite des Front-Meniskus hat, b) möglicherweise noch eine Asphärisierung der Sekundärspiegelfläche, um die Bildfeldkrümmung und Koma zu verbessern und c) eine andere axiale Position der Sekundärspiegelfläche, wozu der Sekundärspiegel auf der Meniskus-Rückseite auf ein „Podest“ gesetzt wird.

Typ 7: Ritchey-Chrétien-Cassegrain mit Bildfeld-Ebnungslinse.

Bild 20: RC-Cassegrain-Teleskop mit Bildfeldebnungslinsen, die zwischen Sekundärspiegel und hinterem Fokus liegen – hier nicht dargestellt. Die Spiegelflächen sind Asphären, die weder parabolisch noch hyperbolisch sind. – Quelle: Wikipedia – Autor: ArtMechanic – http://creativecommons.org/licenses/by-sa/3.0/

Typ 8: Cassegrain-Typen mit „Sub-Apertur“-Korrektoren: Argunov, Klevtsov (nach Popov)

Hier sind Linsengruppen (direkt) hinter dem Sekundärspiegel eingesetzt, wobei der Sekundärspiegel meistens als Mangin-Mirror ein Bestandteil dieser Linsengruppe ist:

Bild  21: Klevtsov-Cassegrain-Teleskop – Quelle Wikipedia, Autot HHahn, https://creativecommons.org/licenses/by-sa/3.0

Typ 8: Kutter-Schiefspiegler mit keilförmiger Korrekturlinse

Bild 22: Kutter-Schiefspiegler mit keilförmiger Korrekturlinse

Bei Spiegeldurchmessern über 4 Zoll ist der Fehler aus der „Schiefstellung“ nicht mehr tolerierbar und es muss eine spezielle, schwierig herstellbare keilförmige Linse in den strahlengang eingebracht werden, die den Fehler korrigiert. Damit können Schefspiegler dann aber eine höhere Auflösung erreichen als die besten Apochromatischen Linsenfernrohre. Es gibt professionelle Hersteller dafür und die Geräte können prinzipiell ideal für Volkssternwarten sein – falls sie in die vorhandenen Kuppeln passen.

Es gibt eine Ausnahme bei den Spiegelbaugruppen, bei der es sich nicht um eine Erfindung  für die astronomische Optik handelt, sondern eigentlich um die Umkehrung einer Fernrohr-Optik: ein optisches Element, das aus einer annähernd punktförmigen Lichtquelle ein möglichst enges, parallel gerichtetes Lichtbündel erzeugt – der Reflektor eines Such-Scheinwerfers bzw. Leuchtturm-Lichtes. Dies ist der „Mangin-Spiegel“.

Bild 23: Mangin-Spiegel in einem Suchscheinwerfer zur Erzeugung eines möglichst parallelen Lichtstahlen-Bündels, mit der Lichtquelle bei dem roten Kreuz im Brennpunkt des Spiegels. Die rückseitig verspiegelte negative Meniskuslinse korrigiert den Öffnungsfehler des Kugelspiegels. Quelle: Wikipedia – https://creativecommons.org/licenses/by-sa/3.0/

Es folgt in kürze Teil II – die katadioptrischen Fotoobjektive

Herbert Börger

Berlin, 18. Oktober 2020

Neues von unserer Garten-Spinne

Es bleibt aus den letzten Wochen folgendes Ereignis nachzutragen:

Am 18.07.2020 wurde ich morgens um 07:15 h in unserem Garten Zeuge eines erfolgreichen Rekordversuches unserer Gartenspinne:

Thekla2_12k

Bild 1: Langstreckenrekord unserer Chef-Gartenspinne am 18.07.2020 (Bild von 102 MP auf 12 MP heruntergerechnet) – Länge des Fadens: knapp 6 Meter  etwa 3 Meter über dem Boden.

Das war übrigens bei uns in diesem Jahr 2020 bisher der erste (und bis heute einzige) Morgennebel – und der war nur schwach ausgebildet! Hätte es den Nebel nicht gegeben, hätte ich dieses Werk der Gartenspinne nicht gesehen – denn was dort im Foto sichtbar wird, ist in dieser Form eine „Perlenschnur“ von Wassertropfen, die sich in dem Nebel an dem Spinnfaden in gleichmäßiger Größe und Abstand gebildet haben.

 

Altweiber-Morgennebel

Bild 2: Langstrecken-Rekord ihrer Ur-Großmutter am 06. Juni 2017, morgens um 7:10 – in dem Jahr war Morgennebel häufiger (Bild von 18MP auf 12 MP herunter gerechnet). Länge des Fadens: 4,5 Meter.

Das sind beeindruckende „Bauwerke“ – aber was stellen sie physikalisch wirklich dar?

Solche Fäden entstehen in einer winzigen bio-chemischen „Fabrik“ (d.h. „Drüse“) im hinteren Körperbereich der wenige Millimeter oder Zentimeter großen Spinne. Durch die Austrittsdüse wird das austretende Material durch die Bewegung der Spinne zum Faden geformt. Besonders Eindrucksvoll sieht man das, wenn eine Spinne sich „fallen“ läßt und dabei an ihrem Spinnfaden hängt. D.h. SOFORT nach dem Austritt des Materials ist der Faden hoch belastbar.

Damit nicht genug, kann eine Spinne die „Rezeptur“ des Spinnfadenmaterials kurzfristig dem Bauwerkszweck anpassen – sie kann bis zu sechs verschidene Fadeneigenschaften erzeugen. Bei der Spinne, die Radnetze herstellt, sind es zumindesten zwei sehr unterschiedliche Fadenarten:

  1. Tragfäden mit ca. 4 Mikrometer Durchmesser, die sehr steif und fest sind – E-Modul 10 GPa (Gigapascal) und Festigkeit 1.100 MPa (Megapascal) bei ca. 25% Dehnbarkeit bis zum Reißen. Mit ihnen ist das innere Radnetz an der Umgebund befestigt.
  2. Fangfäden mit etwa einem Zehntel des E-Moduls („weicher“) und der etwa zehnfachen Dehnung bis zum Reißen. Dise Fäden haben ca. 2,5 Mikrometer Durchmesser und sie tragen in ca. 0,1 mm Abstand klebrige Tröpfchen.

Damit spielt die Spinnenseide in der Oberliga unserer High-Tech-Synthetikfäden mit!

Ich gehe davon aus, dass die mehrere Meter langen, fest verankerten Fäden als Tragfäden hergestellt wurden. Welche physikalischen Eigenschaften hat das eindrucksvolle, 6m lange Bauwerk?

Der Literatur entnehme ich, dass die Dichte der Spinnenseide 1,3 Gramm/Kubikzentimeter beträgt.

Bei 4 µm Durchmesser und 6 m Länge wiegt der Spinnfaden 10 Mikrogramm (µg). Die Untersuchung der Wasserperlenkette, die daran hängt ergibt einen mittleren Durchmesser von 60 µm bei einem Tropfenabstand von 100 µm, d.h. auf 6 Meter Länge hängen 60.000 Wassertropfen am Faden – entspricht einem Gesamtgewicht von 6.000 Mikrogramm (6 mg). Also hat das Wasser, das den Faden erst „sichtbar“ macht, die 600-fache Masse des Fadens an dem es hängt! Besteht da nicht die Gefahr des Reißens? Der Spinnfaden würde erst bei einer Last von 0,013 Newton reißen. Das entspricht etwa dem 200-fachen des Gewichtes der Wassetropfen … oder dem 10-fachen des Gewichtes einer ziemlich „fetten“ Kreuzspinne!

Wenn das jemandem Ehrfurcht vor den Fähigkeiten unserer Planeten-Mitbewohner vermitteln würde, wäre der Sinn dieses Textes erfüllt.

Herbert Börger

Berlin, 20.07.2020

 

My Crazy Lenses / Meine sehr speziellen Objektive – No.1: Focal-Length 40 mm / Die Brennweite 40 mm

40 mm/45 mm (or 43 mm) is one of my very favorite focal lengths: in fact it corresponds very close to the diagonal of the 35 mm still photo format!

… and it is the perfect focal length for street photography – and for all situations in which you have just one focal legth to choose, which means: you have no choice really …

The first camera, whith which I was „socialized“ for Single Lens Reflex Cameras was the Contaflex II with Tessar 45mm f2.8 of 1953.

Contaflex-II_900

It was the time before the German photo industry „suddenly“ collapsed and when the local camera dealer still could repair a Contaflex II mechanically just within a day! (And there was nothing else really but mechanics – you will not seriously call a Selen photosensitive cell „electronics“?!)

This history may have strongly influenced me in my preference for this focal length – but you may also find one thousand good reasons for this focal length, which is the „real normal focal length = the diagonal of the 24 x 36-format“ indeed: longer than 35mm, shorter than 50mm.

In early times most of the point-and-shoot-cameras with fixed (built-in) normal lenses had 38mm to 45mm lenses … and there are still some today.

In fact this focal length was ALWAYS present in the photo industry for system cameras – and I own some of them:

Tessar 45mm f2.8 as fixed lens in the Contaflex II of 1953
„New“ Tessar 45mm f2.8 for Contax/Yashica-Mount – a 1983 design based on new glass
MD-Rokkor 45mm f2.0 – a pancace-type standard lens for Minolta SRT cameras of 1978
Minolta M-Rokkor 40mm f2.0 with Leica-M bayonet  (for the 1973 „CL“ Leica/Minolta)
Olympus 40mm f2.0 – an ultra compact pancake design of 1978 for OM cameras
Planar 45mm f2.0 for Contax G1/G2 of 1994

… and the modern available to-date lenses:
Fujinon 27mm f2.8 pancake design for APS-format X-trans sensors (correspond. to 43mm)
Panasonic 20mm f1.7 for Micro Fourthirds (corresponds to 40mm at FullFormat)
Batis (Distagon) 40mm f2.0 for Sony E-Mount (FullFormat) of 2018
Sigma 40mm f1.4 for Sony-E-Mount (FullFormat) of 2018
Fujinon 50mm f3.5 for Fujifilm GFX50/100 with sensor 44mm x 33mm

From this list of 11 lenses you can make the conclusion how important this focal length is to me!

… and there is an interval of 65 years in making betweeen all of these lenses!

There are other famous historical lenses, which are not available to me:

I once owned a Nikkor 45mm f2.8 pancake-lens of 1977 on the Nikon F3M – it was a just average Tessar design. The Pentax DA 45mm f2.8 Limited is famous (a Gaussian!). As far as I know, Canon never played around with something like that … nor did Leica! What a pitty!
There is as far as I know also a modern Voigtländer lens 40mm f2.0, which I never tried! As it is an „Ultron“-design (and also includes an aspherical lens) it should also be of top notch performance. About the Voigtländer Nokton 40mm f1.2 aspherical I know nothing but that it probably is a „Distagon“-type lens as my Batis is …

Now here is my odd couple of the week:

–> look at the Olympus 40mm f2.0 pancake vs the Sigma 40mm f1.4 !

OddCouple_OM+Sig_
Bild 1 / picture 1: Olympus OM 40mm f2.0 und Sigma 40mm f1.4 – David and Goliath?

The Olympus 40mm f2.0 is a modified (6 lens – 6 groups!) double Gauss design – but extremly sophisticated due to the extremely short physical length combined with a very respectable speed of 2.0 at a length of 26mm and weight of 146 grams – Filter diameter 49 mm … and the close-focusing ability to 0.3 meters in spite of its compactness! You must however consider, that the OM is made for an SLR: that means: to put it on the same mirrorless Sony-E-Mount-Camera, the adapter adds another 28 mm. But in spite of that – the optical construction is actually pressed into the 26 mm length – including space for a filter-thread… Sitting on my Olympus OM 3Ti camera body it is as perfect package!

The Sigma 40mm f1.4 DG HSM / Art for E-Mount is a monster weighing 1,200 grams and stretching over a length of 157mm. It is composed from 16 lenses, which are stacked nearly face-to-face in the volume of the assembly – including all types of modern glasses  … and even one aspherical lens! And it uses 82mm diameter filters … You could call this a „stretch-limousine“ of modern photo-technique … When you put it on a Sony A7R you feel crazy – and in the street everybody thinks, you are peeping into the crowd with a super-telephoto! That is somewhat embarrassing.

And no: it has NO tripod-thread somewhere near the lens+camera-center-of-gravity. So you have to balance the massive lens on one hand while you take care of that tiny miniaturized camera at the near end of it…

Could there be any rational sense in the making of the Sigma-Monster? Serving exactly the same purpose on the camera: taking a picture with an angle of view of circa 57 degrees?

O.k., lets try:

The lens has a very high speed – I do not know personally any other 40mm-lens with f1.4 so far  – at least for FullFormat. (There has been a 40mm f1.4 for Olympus Pen HalfFrame-Cameras in the nineteen-sixties and yes: there is even a Voigtländer Nokton 40mm f1.2 now for 35mm) … and this Sigma is the best photographic lens I know at present for 35mm-format (independent of focal length and brightness)  – a fact that might justify even the price … Beware: this is my personal ranking – nothing more nor less.

The optical qualitiy of the lens is overwhelming … I instantly saw the brilliant performance of this lens – just through the finder of my Sony camera! An extraordinary situation! At f1.4 !!!

So now let us look at the resolution facts measured with IMATEST. For this I use generally the Sony A7RM4. How much better is the super-ambitioned super-modern Sigma against the antique Olympus gem of 1978?

The spreadsheet shows some other historical and modern lenses for comparison purpose.

(Remark: As I cannot measure resolution with a fixed lens in an analog camera like the Contaflex II, I chose a typical 50mm-Tessar of the nineteen-fifty/sixties from Zeiss-Ikon for the first comparison-position. The „old“ Tessar from 1961 is what you expect from it (based on 1902 invention by Paul Rudolph): good anastigmatic design but a little bit soft.

OddCouple40-2

Bild2 / picture 2: Resolution, edge-profile width, distortion and  CA for a group of 40/45mm-lenses for 35mm-FullFormat (plus corresponding Fujinon 27mm-lens for APS-sensor format)

(Bemerkung zu der hier neu hinzugefügten Spalte 4 – „Kantenschärfe“: das ist die Breite des Übergangs an einer standardisierten Hell-Dunkel-Kante von 10% bis 90% (in Bildmitte) – siehe untenstehendes Bild 2

Remark in reference to the column 4 width of „edge-profile“: this is the width of the transition from white to black at a standardized edge between 10% and 90% of brightness (in the center) – see picture 2 below, upper graph:

Kante_Sigma40f1,4

Bild 3 / picture 3: Edge profile (10-90% rise) – upper picture) and MTF-curve (lower) for Sigma 40mm f1.4 fully open (f1.4). Absolute perfect performance! Remarkable MTF-result: MTF is stunning 0.403 at Nyquist-frequency and drops slowly stopping down! Excelent lenses like the Batis 40mm f2.0 start at 0.3 and reach 0.35 at optimum f-stop (f4.0).

The optical quality-results of the Sigma 40mm f1.4 / Art (on the 62 MP Sony A7R4 –  Nyquist frequency: 3.168 LP/PH):

  • At f1.4 the weightet mean resolution of MTF30 over full frame is 93% Nyquist-frequency (center 102%, corner 78%)
  • 10-90% rise of edge profile is 0.96 pixels at f1.4 – which is lowest at this f-stop
  • MTF at Nyquist-frequency is 0.403 at f1.4 – going down to 0.34 at f5.6.
  • Center resolution is max. at f2.0 with 110% Nyquist-frequency (3.472 LP/PH)
  • weighted mean is max. at f5.6 with 99% Nyquist-frequency
  • at this f5.6 f-stop the corner-resolution (average over 4 corners!) reaches 88%
  • The differences of resolution between f2.0 and f8.0 are irrelevant under practical photographical aspects: 3.017 – 3.141 LP/PH weighted average over the full frame!
  • Distortion is -0.01% to -0.1% – at most f-stops around 0.05% – let’s say: „ZERO“
  • Lateral Chromatic Aberration (CA) is max. 0.1 mostly ca. 0.03 pixels around f5,6
  • Autofocus is excellent!
  • Due to the high image-contrast, manual focusing is very easy, fast and precise with this lens!

(LP/PH means: Line pairs per picture hight – picture hight für Sony A7R4 is 6336 pixels.)

Conclusion: The Sigma 40mm f1.4 is a highly convincing lens opticaly and in build quality. A bit closer focusing range would have been nice for its price (like the Batis 40f2.0 – and even the pancake OM-40mmf2.0 focuses closer!) – the handling on the Sony mirrorless camera is a serious task … I cannot recommend to put the camera with this lens on a tripod for day-to-day-work – just using the tripod-thread of the camera-body! (For my IMATEST test-frames it worked just o.k.). I would recommend to use this lens on a massive and solid D-SLR to be really happy with it! Personally I would use it for Street Photography and for Architecture – if there were not the handling restrictions.

And what about the optical merits of the compact side of the „Odd Couple„? —- The Olympus OM 40mm f2.0?

The merits are fantastic – even in comparison to modern lenses – especially under the aspect of its compactness. I was very amazed, when I read, that the lens was considered by Olympus as a low-cost alternative to other standard lenses (entered at just below 80 Dollars!). In spite of that (and the quality!) there were not so many sold … (good for the price on the second hand market!).

This lens was designed just a few years before the exciting new glass-types (like ED-glass) entered the industry – delivered from 1978. In the center it is just about 3% behind the Batis – even open at f2.0. In the corners it starts low – typical for the time (see the MD 45mm f2.0). Stopped down to f8 it improves dramatically in the corners (at 90% of the FOV!) – resolving ca. 7% close to the corner performance of the Batis 40mm. This resolution-perfomance of the OM 40mm f2.0 is much better than it could be brougt practically to the normal analog film-emulsions of the 1970s times (or even today) – with good contrast at the same time.

The price, this Olympus OM-lens has to pay for its compactness is obviously the distortion (at -1.5% still really acceptable for the time) and the CA – twice as big than contemporary „standard-Lenses“ and 20 times larger than typical today (not to forget both properties could be corrected afterwards today as well!).

Stopped down this ultra-compact Olympus OM-gem  40mm f2.0 reaches results in practical picture-taking, which use the resolution of the 62 MP mirrorless sensor seriously! Look at the two comparison-shots of a Montbretia-colony below, which are taken free-hand, manual focussing. The depth of the scene allows to judge, where the sharpness-plane is. And with a large number of similar objects you have the chance, to hit one of these with the focus-point exactly. At least you can tell: no – it is not the lens, which is not sharp: it is you, who focused wrong …

I chose a „nature-scene“, because in this you have the chance, that below the larger structure of the object there is still a sub-structure … and below that another sub-structure … and so on! The picture of a bicycle-frame does not offer too much of that … I did focus at the stamens of the highest upright blossoms near the center. (Natural sunlight came from the right side.)

DSC06004_HD

Bild 4 /picture 4: The scene for the comparison shot – here with Olympus OM 40mm f2.0 at f8  – distance ca. 0.9 m (on Sony A7R4) – MANUAL focussing

Following are sections at 100%-view-level (no corrections made on the data-file):

Here with the Sigma-lens I exactly hit the target, which I focused (blossom in the middle of the three) – on a big screen you see the wonderfull plasticity of the stamens-details even on this level of enlargment. Red is a difficult colour and the contrast within the blossom-leaves is very low.

DSC06000_Sigma100%

Bild 5 /picture 5: Detail of this scene – here with Sigma 40mm f1.4 at f8 (H:1325 pixel)

Next is taken with the Olympus OM 40mm f2.0: the focus sits about one cm more in front compared to the Sigma-shot: here it is the right blossom with stamens – nearly as sharp as with the sigma. I had not noticed, that a wasp had settled on the Montbretia flower – exactly in the focal plane …!

DSC06001_OM100%

Bild 6 / picture 6: Detail of the scene with Olympus OM 40mm f2.0 at f8 (H: 1300 pixel)

Next picture:  Look how the insect pops out from the picture with the Olympus OM-lens at 0.9 meters focusing distance, with a surprising plasticity even at 100% viewing-enlargement (see picture 7) – even the fine hairs on the insects body starting to show.

DSC06004_OM40_Wespe_100%

Bild 7 /picture 7: Detail of a second shot with the wasp taken with Olympus OM 40mm f2.0 at f8 (height: 763 pixel) – at 100%-enlargement (picture taken at distance 0.9 meters!)

Conclusion: if you like to stay nearly „invisible“ in the street (where corner-resolution rarely matters!) and if you are well used to and experienced with manual focusing (MF), this more than 40 years old Olympus lens-design still is a valid option to use – even on the Sony A7R4! My copy still is clear and contrasty (obviously!). Near the center, the detail-resolution is really comparable to the Sigma monster-lens stopped down (f5.6 … 8.0). The merits of the Sigma-lens are its phantastic performance between f1.4 and f2.8 and into the corners – at practically zero distortion and CA!

The closest modern competitor to the Sigma 40mm is the Batis 40mm f2.0 (Distagon), which is just slightly behind the Sigma in every single optical property – fortunately it is also somewhat behind in price … and very-very-much lower in weight. As mentioned already it focuses very close! In practical picture-taking situations, you would probably not be able to tell which picture is made with the Sigma and which with the Zeiss-Batis – if close focusing is not part of the game…

The optical properties of all the other historical lenses in the comparison show very well the typical development in optical quality of standard-lenses over the time since just shortly after World War II (from 1953 – when I was 8 years old).

Two of these lenses ar made not for SLRs but for Rangefinder-Cameras, with the typical short distance between the rear of the lens and the film/sensor (rear focus). Especially at wider field of view this leads to light-rays, hitting at very flat angles onto the picture-plane. That is no problem with analog film – but a desaster with digital sensors!

These RF-lenses are the Minolta-M 40mm f2.0 (for Leica-M-Mount, coming with the Minolta CL in 1973) and the Planar 45mm f2.0 for the legendary (Autofocus!) Contax G1/G2 – early 1990s. Both are suffering severely under the oblique-ray-problem on the Sony-Sensor leading to very low corner-resolution in my measurements! This does not reflect the real performance on analog film!

The Planar 45mm f2.0 was famous as one of the best standard-lenses of its time – and I can confirm, that there is no such corner-resolution issues on analog film with my Contax G2. Interesting, that the issue vanishes stopped down to f8. Together with the Sonnar 90mm f2.8 on the Contax G2 you had one of the best lens-sets  of the 90s (plus autofucus!) on one of the most beautiful cameras EVER… That you could additionally have a crazy HOLOGON 16mm f8 on this camera makes it even more remarkable.

Sensational is the „New Zeiss Tessar“ 45mm f2.8 for Contax SLR – an extreme pancake-lens  (length 16mm !) based on the new glass-types of the early 1980s. In this Zeiss has extended the performance of the famous 4-lens-Triplet (invented 1902) to the level of the best double-gauss designs (Olympus 40mm and Contax-G-Planar 45mm). Only the edge-profile-sharpness did not arrive at the level of the Gaussians. It was also edited as aniversary-lenses for both Contax-aniversaries 1992 (60th) and 2002 (70th) – the latter one together with the Contax Aria: a much beloved combination, which I owned once.

Stopped down (to f8-f11) it nearly reaches the performance of the modern Batis 40mm! This lens was very expensive for a 4-lens design (starting at DM 698,00 – later € 449,00)! Due to this probably not too many should have been sold – however, still today it is legendary! The legend is justified by the measured data.

The Angénieux-Zoom 45-90mm f2,8: I could not resist to put this first Photo-Zoom of Angénieux (designed ca. 1964 – delivered exclusively for Leica SL/Leica R from 1968 to 1980!) into this comparison. The reason: in the 1960-70s in Germany, the so called „German doctrine“ was common sense, which says: „No zoom-lens can ever reach the performance of a fixed-focal-length lens!“ I can testimony this myself: that is what I thought at that time, too. And it was unfortunately confirmed, after we bought the first cheap zoom-lenses for amateurs.

For the professional cine-lens sector, this was not true any more since 1956/1960 – when Pierre Angénieux launched the first 4x-cine-zoom-lenses in production … and 10x-zooms since 1964. (More details about this in my article about Pierre Angénieux – a detailed analysis about his photo-zooms will follow soon in this blog.)

Look at the resolution-data of the 45-90mm-Zoom at 45mm: it reaches 96% of Nyquist-frequency on the 62 MP-Sony in the center. It is on par with fixed-focals of that time – and even wide open it surpasses them in the corners!

Finally I put in at the end of the comparison list, the (in my opinion) most under-rated Fujinon-X pancake-lens 27mm f2.8 (corresponding to 43mm at full-frame). It reaches 125% Nyquist at f4.0 on the Fujifilm H-1 (24 MP), has low distortion and perfect CA and corner-sharpness values. It is a bit soft in the corners wide open. Perfect for street-photography!

Berlin, 7. August 2020

fotosaurier – Herbert Börger

P.S.: I personally own all lenses and cameras, about which I am writing here in my blog. There are no lenses, which the maker or distributer has given to me for free or temporarily. And as you see, there is no advertisement in my blog… and I do not ask for other „support“ from you than that you tell me, if you have found an error. Of course, you are welcome to share your own experience with us in comments.

PPS: Parallel to the Sony A7R4 I shot the same scene with the 50mm f3.5 lens on the Fujifilm GFX100 (also stopped down to f8.0) – which corresponds exactly to the 40mm focal lenth on 24x36mm. See the following detail of the Montbretia blossoms – here again the rightmost blossom with stamens is exactly in the focal plane. The structueres are recorded here even with higher smootheness and plasticity, which is the advantage of the 100 MP sensor, an excelent algorithm and a very good lens as well, which resolves up to 5.051 LP/PH (at f5.6) in the center!

DSCF7459_50mm100%

Bild 8 / picture 8: Detail of same scene with Fujinon 50mm f3.5 on Fujifilm GFX100 at the same distance of 0.9 meters. (height: 1439 pixel)

 

 

Die Rand-/Ecken-Auflösung historischer SLR-Objektive – Teil 1 (Test-Targets)

Beim „Neustart“ der Foto-Objektiv-Produktion direkt nach dem 2. Weltkrieg lag die Rand-/Ecken-Auflösung typischer Objektive für das Kleinbildformat im Bereich von 300 … 400 … 500…600 Linienpaaren je Bildhöhe von 24 mm (entsprechend ca. 25 … 32 … 40 … 50 Linien/mm), während  diese Objektive in der Bildmitte (auch bei Offenblende) über 3.000 LP/PH liefern können. Bei den damals neuen Retrofokus-Weitwinkelobjektiven konnten bei offener Blende die Auflösungswerte in den Ecken auch bei 200 LP/PH oder darunter liegen (entspr. 17 Linien/mm).

Das sind nüchterne Zahlen – der Fotograf „denkt“ aber in Bildstrukturen! Ihn interessiert, was er SIEHT.

Was bedeutet dieser Auflösungsabfall von der Bildmitte zu Rand/Ecke für die praktische Fotografie?

Zunächst möchte ich dieser Frage an reproduzuierbar verfügbaren ebenen Bildstrukturen in einem Testbild für Auflösungsmessungen nachgehen, in dem man außer dem allgemeinen Schärfeeindruck auch Erscheinungen wie (Rest-)Astigmatismus und Farbfehler beurteilen kann.

40 L/mm am Rand galten bei Fotoobjektiven der 1950/60er Jahre bereits als „sehr gut“. In den 50er Jahren erreichten Objektive nach den Stand der Technik am Rand ganz selten Werte über 50 … 60 Linien/mm nach den damaligen Tests auf üblichen, feinkörnigem und normal bildgebenden Filmemulsionen, wie sie auch vom Normal-Fotografen verwendet wurden. In der Bildmitte gemessen erreichte die „analoge“ Kombination Objektiv/Film selten Werte oberhalb 90 L/mm.  Auf Spezial-Platten mit hoch-auflösenden Emulsionen – ausgewertet unter dem Mikroskop – konnte man aber auch damals durchaus bis zu 500 Linien/mm messen, was „digital“ 6.000 LP/BH entsprechen würde.

Der Bild-Sensor in der hier verwendeten  Sony A7Rm4 erreicht 3.168 LP/mm (60,3 MP).

Schon in den ersten 25 Jahren des 20.Jh. konnte mit den ausgereiften Anastigmaten in der Bildmitte („axial“) praktisch „beliebig hohe“ Auflösungen erreicht werden und es standen dafür auch geeignete Glassorten zur Verfügung. Man betrachte die mit IMATEST ermittelte Auflösungskurve (über dem Bildradius aufgetragen) des 1923er Ernostar 100mm f2.0 bei nahezu voller Öffnung (f2.8) an der 60MP-Sony-Kamera:

Ernostar100f2_2,8_Vgl
Bild 1: Kantenprofil, MTF-Kurve in der Bildmitte und Auflösung (LP/BH) über Bildfeld des Ernostar 100 f2.0 bei Blende 2.8

Es ist ein 4-Linser mit vier einzel stehenden Linsen – ohne Vergütung! Dafür erscheint Kantenprofil und MTF-Kurve sehr gut. Aber die Auflösungskurve über dem Abstand von der Bildmitte (100% auf der Abszisse entsprechen einem Bildkreis von 21,5mm Radius!) zeigt einen beängstigenden „Absturz“ von über 2.600 LP/BH auf ca. 300 LP/PH an Rand/Ecken!

Hier die Situation dreißig Jahre später – dazwischen liegt der 2. Weltkrieg:

Ang90f2.8_Vgl
Bild 2: Angénieux 90mm f2.5 von 1951  – Auflösung Rand/Ecken liegt bei 400/600 LP/PH – bei f2,5 – immerhin leicht verbessert

Die deutlich größere Verbesserung gegenüber dem Ernostar zeigt sich erst abgeblendet:

Ernostar100f2+Ang90f2,5_f11_Lens_MTF
Bild 3: Ernostar 100f2.0 (links) und Angénieux 90f2.5 (rechts), jeweils abgeblendet auf Blende 11 (optimale Blende)

zwar hat sich das Ernostar noch einmal auf olympische 3.000 LP/PH in der Mitte gesteigert (was 93% der Nyquist-Frequenz der verwendeten Kamera entspricht!) aber am Rand bleibt es bei 700-800 LP/PH (allerdings: immerhin verdoppelt).

Das Angénieux 90mm f2,5 erreicht nun aber über die gesamte Bildfläche gemittelt 2.789 LP/PH.

Machen wir noch einmal einen Sprung 30 Jahre weiter in das Jahr 1987. Die Entwicklung neuer, leistungsfähiger Glastypen hat nun weltweit neue Voraussetzungen geschaffen und war die Voraussetzung für das folgende typische Ergebnis am Beispiel einer anderen Optik-Legende:

Apo-Macro-Elmarit100f2,8_f2,8_Vgl
Bild 4: Leitz Apo-Macro-Elmarit 100mm f2.8 volle Öffnung Blende 2.8 – die extrem nach unten streuenden Messpunkte im rechten Bild stammen von der linken-unteren Ecke des Bildes, in der die Auflösung lokal dramatisch abfällt – die Ursache kenne ich nicht (ein Leitz Apo sollte eigentlich keinen so großen Zentrierfehler haben…).

Dank der neuen Gläser ist das Apo-Macro-Elmarit nun „offenblendentauglich“ – obwohl Kantenprofil und MTF-Kurve in der Bildmitte sehr ähnlich den Kurven des über 60 Jahre älteren Ernostar 100mm f2,0 sind! Abgeblendet, bei optimaler Blende (5,6) ist der Mittelwert der Auflösung über das gesamte Bildfeld des Apo-Macro-Elmarit (2.907) dann gerade mal 120 LP/PH höher als der Wert des „ollen“ Angénieux – und die Maximal-Auflösung des Apo-Macro-Elmarit in der Bildmitte ist abgeblendet nicht höher als beim Ernostar ….

Noch eine für seine Entstehungszeit sehr bemerkenswerte Eigenschaft des Angénieux 90mm f2.5 sticht hervor – der sehr niedrige Farb-Fehler (CA):

Angén90f2,5_f11+Apo-Macro-Elmarit100f2,8_Radial_Vgl Kopie
 Bild 5: Achtung: unterschiedliche Nullpunktlage und Maßstäbe in den Ordinaten!

Auf sehr geringen Niveau ähnlich Apo-Macro-Elmarit bei blau, dreifach so groß bei rot! Aber immer noch ein Drittel vom Contarex-Sonnar 85mm – zehn Jahre später. Einen Kompromiss musste Angénieux aber seinerzeit offensichtlich eingehen, um das zu erreichen: eine relativ hohe Verzeichnung von -1,2% gegenüber +0,4 beim Ernostar und +0,17 beim Apo-Macro-Elmarit.

Man kann also sagen:

der Fortschritt in der optischen Technologie lieferte für die Foto-Objektive überwiegend verbesserte Randauflösung bei Offenblende bei gleichzeitig verbesserter Farbkorrektur, Verzeichnung und erhöhtem Kontrast und verbesserter Streulichtresistenz bei niedrigen Frequenzen – letzteres nicht zuletzt durch die dramatisch verbesserte Beschichtungs-Technologie.

In diesem Link finden Sie Vergleiche des Angénieux 90mm mit weiteren Objektiven über den gesamten Zeitraum 1923 – 2015.

Ich schließe aus meinen vielen Messungen an historischen Objektiven aller Epochen, dass man ab Anfang der 1970er Jahre, den extremen Randabfall der Objektive bei Offenblende schrittweise reduzieren konnte – bereits 1977 gibt es ein Beispiel eines quasi „Ideal-Objektivs“ im Bereich Kurztele (Porträt): das VivitarSerie1 90mm f2,5 Macro! (Mit Einschränkung bei der Streulichtfestigkeit…)

Bei wesentlich größeren Bildwinkeln war das natürlich wesentlich schwieriger und gelang bei Weitwinkelobjektiven entsprechend später mit immer höher- und niedriger-brechenden Gläsern – und im Extremfall (großer Bildwinkel und hohe Lichtstärke) zuletzt erst mit dem Einsatz asphärischer Linsen.

Was bedeuten aber nun die niedrigen Rand-Ecken-Auflösungen bei den frühen historischen Optiken in den Bildstrukturen?

Fangen wir mit einer reproduzierbar beleuchteten, ebenen Objekt-Situation an, in der wir auch diese Auflösungswerte messen: dem detailreichen Test-Chart, das wir abfotografieren. Die Beschreibung der Testmethode finden Sie in diesem Link.

Das ist das Test-Bild, hier durch das Angénieux 90mm f2.5 bei voller Öffnung fotografiert.

#TestChart_Angén90f2,5_f2,5
Bild 6: Imatest-Test-Chart SFRplus, fotografiert im Kleinbild-Format 3:2

Der Abstand zwischen den oberen und unteren schwarzen Balken ist 783 mm im Original.

Die Analyse-Software von IMATEST verwendet übrigens nicht die kleinen Rosetten, die in die dunklen Quadrate eingebettet sind, sondern die Seitenkante der Quadrate, die um 5.71° VERDREHT sind. Mehr erfahren Sie in dem oben aufgeführten Link.

Das Übersichts-Bild soll Ihnen ein Gefühl davon vermitteln, wie fein die Rosetten-Details sind, wenn man ein Bild im normalen Betrachtungsabstand ansieht.

Hier das Detail eines Quadrates mit Rosette in einer Größe, die der Betrachtung des mit der 60MP-Kamera aufgenommenen Bildes bei „100%-Betrachtungsmaßstab“ entsprechen würde (d.h. 1 Bildschirmpixel entspricht 1 Kamerapixel) – wenn Sie das Quadrat auf Ihrem Bildschirm mit ca. 22cm Kantenlänge sehen.

Dies ist das Quadrat genau im Zentrum:

#TargetCenter_Angén90f2,5_f2,5
Bild 7: Zentrales Target-Quadrat, 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – laut Analyse beträgt die Auflösung des Objektivs hier 2.500 – 2.700 LP/PH (sagittal/meridional) – 100%-Ansicht bei 60 MP!

Folgend nun der entsprechende Ausschnitt in der oberen-rechten Ecke (wegen der sichtbaren Verzeichnung von -1,2% sind die Qadrate in der Mitte und in der Ecke nicht genau gleich groß!):

#TargerCornerUR_Angén90f2,5_f2,5
Bild 8: Target Nr.3 (obere rechte Ecke),, 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – laut Analyse beträgt die Auflösung des Objektivs hier im Mittel 560 LP/PH 

Die Vignettierung (im Mittel über alle Ecken 2 f-stops) hat hier natürlich noch einen bedeutenden Einfluss auf das visuelle Betrachtungsergebnis! Es fällt allerdings sofort auf, dass trotz der hohen Vergrößerung fast keine Farbsäume zu sehen sind – allenfalls ein sehr kleiner roter Schimmer, wie vom CA-Diagramm zu erwarten ist.

Das folgende Bild zeigt dasselbe Detail, auf das ich nun die Vignettierungs-Korrektur von ca. zwei Blendenwerten angewendet habe, wie man Sie mit Photoshop oder als kamerainterne Korrekturmaßnahme durführen könnte:

#TargerCornerUR_corr_Angén90f2,5_f2,5
Bild 9: Target Nr.3 (obere rechte Ecke), 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – Vignettierung kompensiert. Meridional ca. 400, sagittal ca. 600 LP/PH

Hier erkennt man drei Dinge:

  1. Die 560 LP/PH-Auflösung liefern tatsächlich noch klare Bildstrukturen – wenn auch „weicher“
  2. Die Farbreinheit der Abbildung bestätigt sich – allerdings erkennt man einen leichten generellen Gelbstich hier in der Bildecke
  3. Man erkennt sogar den Unterschied zwischen ca. 400 LP (meridional) und ca. 600 LP (sagittal) in den Rosetten-Details: die Ringe sind in der Bild-Diagonale von links oben nach rechts unten erkennbar „kantenschärfer“!

Die Struktur ist „weicher“ wiedergegeben – aber dennoch deutlich und mit gutem Kontrast sichtbar.

Beachten Sie bei diesen Bildern bitte: es handelt sich um die 100%-Darstellung des 60 MP-Bildes!

Anmerkung: In Imatest-Diagrammen wird der angelsächsischen Nomenklatur folgend „meridional“ meist als „tangential“ bezeichnet (tangential = meridional) diese Kuven sind durchgehend gezeichnet, die sagittale Auflösungskurve gestrichelt.  In MTF-Diagrammen der Fa. Zeiss ist die Zuordnung umgekehrt: gestrichelt meridional und durchgezogen für sagittal

Kritischer ist diese Situation bei Weitwinkel-Objektiven, bei denen Farblängsfehler und Astigmatismus an Rändern und Ecken eine deutlich größere Rolle (wegen der viel größeren off-axis-Winkeln) spielen.

Wir betrachten das folgend an von 24/25mm-Retrofokus-Objektiven „der ersten Stunde“ (1957/71):

Angénieux wahrte seinen zeitlichen Vorsprung konsequent und brachte seine „Retrofocus“-Weitwinkel-Brennweiten in schneller Folge auf den Markt: 35mm f2.5 in 1950 (6-Linser) vorgestellt und in kleinen Mengen geliefert (ab 1953 Großserie!), 28mm f3.5 (6-Linser) ebenfalls ab 1953, 24mm f3.5 (8-Linser) ab 1957. (Besonderheit: danach wurde von Angénieux niemals wieder eine Neuberechnung dieser FotoB-Optiken herausgebracht sondern diese Optiken bis 1971 unverändert geliefert und das Segment der Festbrennweiten dann völlig eingestellt.

Bei diesen frühen Weitwinkel-Objektiven ist bei Offenblende die Auflösung noch deutlich niedriger als bei dem 90er Objektiv. Bei dem Angénieux Retrofocus 24mm f3.5  liegt die Auflösung in den Ecken bei 310-354 LP/PH (sagittal) und  ca. 600 LP/PH (meridional) bei den Einzelwerten – der Ecken-Mittelwert beträgt 328 LP/PH:

Angén24f3,5_Offen_sagittal
Bild 10: Angénieux 24mm f3.5 bei Offenblende – Auflösung über Bildfeld der sagittalen Strahlenbündel

Sehen wir uns das Target Nr.5 in der rechten unteren Ecke an (sagittal mit 345 LP/PH gemessen – meridional mit 560 LP/PH):

#Target RU_Angén24f3,5_f3,5
Bild 11: Angénieux 24mm f3.5 bei Offenblende f3.5 – Target Nr. 5 – rechte untere Ecke (Vignettierung kompensiert) – sagittal 345 LP/PH – meridional 560 LP/PH

 

Trotz der deutlichen Rest-Fehler ist die Struktur noch deutlich erkennbar, wenn auch richtungsabhängig. Der sagittale Wert entspricht 29 L/mm. Die visuelle Auswirkung des Farbfehlers ist – trotz des hohen CA von 8 Pixel! – auf die Farbsäume begrenzt.

Das Nachbar-Target (Nr. 21) links davon hat 500 LP/PH sagittal und 502 LP/BH meridional – also frei von Astigmatismus, aber mit CA von ca. 4,5 Pixeln:

#Target21_corr_Angén24f3,5_f3,5
Bild 12: Angénieux 24mm f3.5 bei Offenblende f3.5 – Target Nr. 21 – links von der rechten unteren Ecke (Vignettierung kompensiert) – sagittal 500 LP/PH – meridional 502 LP/PH

Folgend sehen wir das entsprechende Auflösungs-Diagramm des Zeiss Jena Flektogon 25mm f4.0 (1959):

Flektogon25f4,0_f4,0_Multi-ROI
Bild 13: Flektogon 25mm f4.0 bei Offenblende – Auflösung über Bildfeld der sagittalen Strahlenbündel

Angesichts des in den Ecken „noch“ bei 301 LP/PH liegenden Mittelwertes (gilt für sagittale und meridionale Strahlen) liegen hier die sagittalen Einzelwerte Rand/Ecken bei erschreckend niedrigen 104 – 222 LP/PH.

Sehen wir uns den Linken Rand (Mitte) mit sagittal 222 LP/PH / meridional 610 LP/PH an (Target-Nr.10):

#Target LRmitte10_corr_Flektogon25f4,0_f4,0
Bild 14: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 10 – linker Rand, Mitte (Vignettierung kompensiert) – sagittal 222 LP/PH – meridional 610 LP/PH

Hier ist die Struktur schon sehr weich aber deutlich zu erkennen – kräftiger Rest-Astigmatismus, aber sehr geringer Farbfehler. Es ist schwer zu sagen, wie diese Situation analog auf Film gemessen worden wäre: 222 LP/PH entsprächen 18,5 Linien/mm… das wäre wohl nicht mehr als gut bewertet worden.

Nur wenige mm weiter nach außen am Target 17 (rechter Rand ein Taget nach unten) liegt die Auflösung bei sagittal 160 LP/PH und meridional bei 591 LP/PH:

#TargetNr17_corr_Flektogon25f4,0_f4,0
Bild 15: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 17 – rechter Rand, eins unter Mitte (Vignettierung kompensiert) – sagittal 160 LP/PH – meridional 591 LP/PH

Hier bricht im sagittalen Sektor der Struktur der Kontrast endgültig ein – fast schon verschwommen und man erkennt, dass noch weiter rechts am äußersten Rand (es fehlen noch 4mm bis zum Rand) der Kontrast noch einmal dramatisch absinken wird.

In der Ecke oben rechts (Target Nr. 3) mit 104 LP/PH sagittal, 338 LP/PH meridional:

#Target3-UR_corr_Flektogon25f4,0_f4,0
Bild 16: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 3 – Ecke oben rechts (Vignettierung kompensiert) – sagittal 104 LP/PH – meridional 338 LP/PH

Man kann die Struktur nur noch erahnen – die extrem niedrige sagittale Auflösung und der hohe Rest-Astigmatismus lösen die Bildstruktur auf – obwohl die Chromatische Aberration mit ca. 1,6 Pixel nur ein Fünftel der CA bei dem Angénieux 24mm in der Ecke ist.

Betrachten wir im direkten Vergleich das entsprechende Objektiv von Zeiss-West, das 3 Jahre später heraus kam und eine Blende lichtstärker ist – Distagon 25mm f2.8 (für die Contarex 1961):

CtrxDistagon25f2,8_f2,8_Offen_sagittal
Bild 17:

Auch hier liegen die sagittalen Werte am Rand bei Offenblende f2.8 unter 200 LP/PH.

Ich zeige folgend die beiden Targets Nr.10 (linker Rand, mitte)  und Nr.5 (rechte untere Ecke):

#TargetNr10_corr_CtrxDistagon25f2,8_f2,8
Bild 18: Zeiss Distagon 25mm f2.8 bei Offenblende Target 10 (linker Rand mitte) – Vignettierung korrigiert

Hier beginnt bei sagittal 195 LP/PH die Bilddefinition sich durch eine Kombination eines starken Rest-Astigmatismus (meridionaler Wert: 917 LP/PH) und des Farbfehlers aufzulösen – der Kontrast ist schwach.

#TargetNr5_corr_CtrxDistagon25f2,8_f2,8
Bild 19: Zeiss Distagon 25mm f2.8 bei Offenblende Target 5 (rechte untere Ecke) – Vignettierung korrigiert

In der Ecke sagittal 185 LP/PH mit starkem Rest-Astigmatismus findet sich nur noch in einem sehr schmalen meridionalen Sektor eine klar definierte Struktur (mit 379 LP/PH) mit niedrigem Kontrast.

In dieser Gruppe der FRÜHEN Retrofocus-Objektive mit 24 oder 25 mm Brennweite (Angénieux, Carl Zeiss Jena Flektogon und Zeiss-Ikon Distagon) gibt es ein viertes (1959) aus Japan: Topcon Topcor 2,5cm f3.5, das unter diesen Optiken herausragt:

Topcor24f3,5_f3,5_Offen_sagittal
Bild 20: Topcor 2,5cm f3.5 – sagittale Auflösung bei Offenblende im gesamten Bildfeld (443 … 618 LP/BH)

Der Mittelwert der (sagittalen und meridionalen) Rand-/Ecken-Auflösungswerte beträgt hier 683 LP/PH. Das folgende Bild zeigt die Struktur von Target Nr.5 in der rechten unteren Ecke:

#TargetNr5_corr_Topcor24f3,5_f3,5
Bild 21: Topcor 2,5cm f3.5 bei Offenblende, Target Nr.5  – untere rechte Ecke bei sagittal 587 LP/PH (meridional 914 LP/PH) – also mit mäßigem Rest-Astimatismus – Vignettierung korrigiert

Bei diesem Auflösungs-Niveau  (mit mäßigem Astigmatismus und geringem Farbfehler (CA-Wert in der Ecke 1,5 Pixel!) liegt nun eine klare Bildstruktur vor – nur deutlich weicher als im Bildzentrum.

Dieses Objektiv ragt damit in der Bildqualität deutlich aus dem Feld der zeitgenössischen „Superweitwinkel“ zwischen 1957 und 1961 hervor.

Sehen wir uns noch den nächsten Qualitäts-Schritt am Beispiel des Minolta MD W-Rokkor 24mm f2.8 an:

#TargetNr5_corr_MD24f2,8_f2,8
Minolta MD W-Rokkor 24mm f2.8 Offenblende f2.8 – Target Nr.5 (untere rechte Ecke) – CA mit 3 Pixel deutlicher als beim Topcor – Vignettierung korrigiert

Der Kontrast liegt hier deutlich höher mit einem Durchschnittswert der Auflösung Rand/Ecken von 1002 LP/PH.

Schließlich die gegenwärtige moderne Referenz – das Zeiss Distagon 25mm f2.0:

#TargetNr3_Batis25f2,0_f2,0
Bild 23: Zeiss Distagon 24mm f2.0 Offenblende f2.0  –  Target Nr.3 (obere rechte Ecke) – sagittal 1.206 , meridional 1.897 LP/PH und CA von 0.5 Pixeln

Das Objektiv ist mit der Auflösung bei Blende 2.0 in der Ecke mit durchschnittlich 1.517 LP/PH visuell kaum noch von der Bildmitte zu unterscheiden (Vignettierung auch hier korrigiert!).

Man sieht an diesen Beispielen deutlich, dass außer dem meßtechnischen Wert der Auflösung die Rest-Bildfehler die visuelle Wirkung wesentlich mit beeinflusst. Wobei man den Eindruck hat, dass ein größerer Farbfehler sich ggf. weniger zerstörerisch auf den Bildkontrast auswirkt als ein starker Rest-Astigmatismus.

Man sieht, dass 200-300 LP/PH als Untergrenze einer bildgebend noch brauchbaren Auflösung gelten können (s. Bild 14), wenn Rest-Astigmatismus und Farbfehler im mäßigen Grenzen bleiben. Der absolute Auflösungswert entscheidet in diesem Bereich allerdings nicht alleine über das bildliche Ergebnis. Genauso entscheidend ist der Korrekturzustand – also die anwesenden Rest-Linsen-Fehler. Allgemein sind diese historischen Objektive in der Rand-/Ecken-Auflösung ab ca. 400 – 600 LP/PH als gut zu bezeichnen (s. Bilder 11, 12 und 21) – mit gewissen Abstrichen beim Kontrast.

Ab Anfang der 1970er Jahre werden Auflösungs-Werte in den Ecken um 1.000 LP/PH bei Offenblende auch bei Weitwinkelobjektiven erreicht, womit zumindest in der Analog-Fotografie hervorragende Ergebnsise möglich waren.

Moderne Objektive erreichen dank asphärischer Linsenflächen hervorragend ausgegleichene Ergebnsise auch bei Offenblende über das gesamte Bildfeld – auch bei sehr großen Bildwinkeln (s. Bild 23).

Copyright Fotosaurier, Herbert Börger, Berlin, 14. März 2020

 

 

 

 

 

 

 

 

 

Die Qualität historischer Angénieux Foto-Objektive – 1. Festbrennweiten, 1b. Retrofocus-Weitwinkelobjektive, C. 24mm f3.5

C – Angénieux Retrofocus 24mm f3,5 (R61) von 1957: Mein Exemplar ebenfalls mit Alpa-Anschluss.

Beim Einführungstermin behielt Angénieux auch hier die Nase vorn. Es ist nun ein 8-Linser mit acht frei stehenden Einzellinsen. Das negativ brechende Vorderglied besteht nun aus 4 Einzellinsen!

Angénieux24mm+Topcor2,5cm_900
Rechts neben dem Angénieux 24mm f3.5 steht hier das ein Jahr später erschienene Topcor 2,5cm f3.5 – damit möchte ich den (mir) unbekannten Optik-Konstrukteur ehren, der offensichtlich Fähigkeiten besass, die selbst über die des legendären Angénieux weit hinaus reichten! Und dies war nicht sein einziger Coup… Darüber werde ich in einem speziellen Topcon-Artikel in Kürze berichten.

Auch bei diesem weltweit ersten Retrofokus-Weitwinkel für Kleinbild SLR mit über 80° Bildwinkel hatte offensichtlich die Verzeichnungsfreiheit allerhöchste Priorität für Angénieux, die nun bei fast Null liegt. Bis heute habe ich nichts vergleichbares gesehen. Für diesen Aspekt nahm man offensichtlich wiederum die relativ hohe Chromatische Aberration in Kauf – die aber auf demselben Niveau liegt, wie das zeitgenössische Canon-Meßsucher-Objektiv 25mm f3.5!

Um es gleich vorweg zu nehmen: auch bei diesem Objektiv legt Angénieux wieder einen Stand der Technik vor, der erst Anfang/Mitte der 1970er Jahre maßgeblich übertroffen wird ( mit Ausnahme der singulären Ausnahme-Optik von Topcon!) – dementsprechend wird es auch bis 1971 in dieser Form geliefert.

Dagegen gestellt:

  1. Canon Rangefinder (M39) 25mm f3,5 (1956)
  2. Carl Zeiss Jena Flektogon 25mm f4,0 (1959)
  3. Topcon Topcor 2,5cm f3,5 (1959)
  4. Zeiss für Contarex Distagon 25mm f2,8 (1961)
  5. Minolta MD Rokkor 24mm f2,8 (1971 – auch von Leica übernommen!)
  6. Olympus OM 24mm f2,0 (1973)
  7. State-of-the-art: Zeiss Distagon (Batis – E-Mount) 25mm f2,0 (2016)
  8. Extra: Zoom Sony (E-Mount) 12-24mm f4,0 bei 24mm
  9. Fujinon 23mm f4.0 (für GFX) – hier im KB-Format vermessen

Hier der Auflösungsvergleich als Tabelle:

Angén24_Vgl_red2

 

Fünf+1_24+25er
Vergleichskandidaten v.l.n.r.:  Angénieux 24mm f3.5  –  Zeiss Jena Flektogon 25mm f4.0    –   Contarex Distagon 25mm f2.8 – Minolta MD 24mm f2.8 – Olympus OM 24mm f2.0 davor das winzige Canon Rangefinder 25mm f3.5 mit M39-Gewinde

Achtung: Der Vergleich mit dem Meßsucher-Kameraobjektiv von Canon (25mm f3.5) krankt bezüglich der Auflösung Rand/Ecken sicher an der Situation, dass bei (allen) diesen M39-Weitwinkel-Optiken wegen der kurzen hinteren Schnittweite am Digitalsensor die Strahlen zu flach auf den Sensor auftreffen. Diese Objektive sind nicht im vollen Bildformat „digitaltauglich“.

Bemerkung: Für das Minolta MD W-Rokkor 24mm f2.8 habe ich am 10.03.20 die Auflösungsdaten und Messkurven aktualisiert! Da das Objektiv einen größeren Bildwinkel als die anderen 24er des Vergleichs hat, war die automatische Positionierung der Meßzonen mit den anderen 24/25ern nicht vergleichbar und die Messung wurde wiederholt.

Ein Jahr nach der Einführung des 24er durch Angénieux bringt ISCO (Göttingen, BRD) 1958  das Westron/Westrogon 24mm f4.0 auf den Markt. Dahinter steht eine Geschichte: der Optik-Konstrukteur Rudolf Solisch, der mit Dr. Harry Zöllner zusammen das erste Flektogon 35mm entwickelt hatte, war direkt nach der Patentanmeldung 1953 in den Westen gegangen und taucht hier bei ISCO als Erfinder des Westron 24mm f4.0 auf (das Westron 28mm f4.0 erscheint erst 1961!). Ich besitze es nicht – seine optische Qualität ist umstritten.

Zeiss Jena selbst braucht noch ein Jahr länger, um 1959 das Flektogon 25mm f4.0 auf den Markt zu bringen (andere Quellen nennen 1960). Es ist ein 7-Linser. Leider ist der sagittale Strahl in der äußersten Bildecke „unterirdisch“ bei Offenblende – sonst ist das Objektiv ganz ordentlich. aber schnell vom Stand der Technik überholt – so wurde es schon 1967 ersetzt.

Ebenfalls 1959 kam von Topcon das RE Auto-Topcor 2,5cm f3.5 heraus. Möglicherweise ist diese Optik in Europa zunächst nicht weiter aufgefallen – die Brennweite wurde sogar noch in cm graviert, was den 50er Jahre-Ursprung beweist! Es hat ebenfalls noch die charakteristische relativ große Negativ-Meniskus-Frontlinse – es ist das Objektiv rechts neben dem Angénieux auf dem ersten obigen Foto. Es gibt zu der Optik (im Lieferumfang) einen Filtersatz, der rückseitig eingeschraubt wird (und es muss immer ein Filter im Strahlengang sein!).  Es wurde für die Topcon RE gebaut und hat somit eine Automatik-Blende, die aus dem Kamera-Inneren betätigt wird! Ich kenne den Linsenaufbau nicht. Alle Auflösungs-Daten sind senstionell für die damalige Zeit (s. Tabelle).

Die Zeiss-Konkurrenten 25mm
Die Zeiss-Konkurrenten 25 mm Ost/West

Für das Distagon 25mm f2.8 an der Contarex nimmt sich Zeiss Ikon Zeit bis 1961 – und es ist bei Offenblende und abgeblendet etwa gleichauf mit dem Flektogon 25mm – aber auch nicht besser. Der Aufbau hat hier schon das strikte Prinzip von Grundobjektiv und in großem Abstand davor gesetztem negativ brechenden Frontglied verlassen. Der Frontdurchmesser ist entsprechend kleiner.

Nikon ging von Anfang an diesen Weg zu Objektiven, denen man das „Retrofokus“ nicht mehr auf den ersten Blick ansieht. Die Nikon F wurde vor allem wegen der weiteren Verwendung der früheren symmetrischen Weitwinkel-Designs mit kurzem Abstand zum Film mit der Möglichkeit zum Verriegeln des Spiegels in der oberen Lage ausgestattet. Man nahm sich dann Zeit bis 1967 – und legte mit dem Nikkor-N 24mm f2.8 ein „integriertes“ Retrofokus-Design vor, das kompakte Weitwinkel ermöglichte. In diesem Falle mit 52mm Filtergewinde! Die optische Qualität im Vergleich zu den anderen Kandidaten ist mir nicht bekannt.

Dieser Weg setzte sich konsequent fort, wovon die beiden 24er von Minolta und Olympus zeugen. Das Minolta MD Rokkor-X 24mm f2.8 (VFC) von 1971 ist das legendäre Weitwinkel (das auch von Leitz für die Leica R adoptiert wurde). Es liefert tatsächlich ein gewaltiger Fortschritt im Kontrast bei niedrigen Frequenzen (MTF-Kurve!) und im Kontrast an Rand/Ecke.  Es ist ebenfalls gut in der Verzeichnung und deutlich besser in Chromatischer Aberration.

In meinen Vergleichsmustern sehe ich mit dem legendären Olympus OM 24mm f2.0 im Jahr 1973 einen gravierenden Fortschritt in der Auflösung bei Offenblende und hoher Lichtstärke.

Das gegenwärtige Zeiss Distagon „Batis“ 25mm f2.0 für die Sony E-Mount Kameras nutzt nun endgültig die Leistung des 60 MP-Sensors in vollem Umfang.

Auch in diesem Vergleich ist zu sehen, dass man heute – bei Begrenzung der Lichtsärke (hier auf f4.0) die beste Qualität auch mit einem Zoom-Objektiv erreichen kann. Das Sony G 12-24mm f4.0 ist dabei sogar relativ kompakt.

Hinweis: Mein Ziel in dieser Darstellung ist es nicht eine vollständige Darstellung der Geschichte einer Objektiv-Klasse für SLR, sondern die Gegenüberstellung von vergleichbaren zeitgenössischen und nachfolgenden Objektiven zu den Angénieux-Optiken. Das geschieht an Beispielen, die mir selbst zur Verfügung stehen. Die Abwesnheit von Nikon-Canon-Pentax-Optiken ist rein zufällig entstanden. Der Schwerpunkt des Artikels liegt auf den ganz frühen Optiken.

Wie sich die niedrige Ecken-Auflösungen – verglichen mit der Auflösung im Zentrum – auf die bildliche Darstellung von Strukturen auswirkt, kann man in diesem Blog-Beitrag sehen:

Das Prüf- und Mess-Verfahren kann man im diesem Blog-Beitrag nachlesen:

Fotosauriers optisches Testverfahren für Objektive mit IMATEST

Vgl_Angén24f3,5_f3,5

Vgl_Angén24f3,5_f11
Angénieux Retrofocus 24mm f3.5 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_Flektogon25f4_f4

Vgl_Flektogon25f4_f16
Zeiss Jena Flektogon 25mm f4.0 bei Offenblende (oben) und optimaler Blende 16 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_Topcor2,5f3,5_f3,5

Vgl_Topcor2,5f3,5_f11
Topcor 2,5cm f3.5 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_CtrxDistag25f2,8_f2,8

Vgl_CtrxDistag25f2,8_f11
Contarex Distagon 25mm f2.8 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_MD24f2,8_f2,8

Vgl_MD24f2,8_f11
Minolta MD W-Rokkor-X 24mm f2.8 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_OM24f2,0_f2,0

Vgl_OM24f2,0_f11
Olympus OM 24mm f2.0 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_Batis25f2,0_f2,0

Vgl_Batis25f2,0_f5,6
Zeiss Batis (E-Mount) 25mm f2.0 bei Offenblende (oben) und optimaler Blende 5,6 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Copyright Fotosaurier, Herbert Börger, Berlin, 10. März 2020

Die Qualität historischer Angénieux Foto-Objektive – 1. Festbrennweiten, 1b. Retrofocus-Weitwinkelobjektive, B. 28mm f3.5

B – Angénieux Retrofocus 28mm f3,5 (R11) von 1953: Mit Alpa-Anschluss wie die meisten anderen meiner Angénieux-Festbrennweiten. Diese Optik wurde auch im gleichen Jahr schon ausgeliefert, in dem das 35er richtig in Großserie anläuft. Es hatte 1951 bereits einen Prototypen mit f2.8 gegeben, dessen Aufbau aber wieder fallen gelassen wurde. Tatsächlich ist der Linsenschnitt gegenüber dem 35mm f2.5 wesentlich geändert – mit 6 Einzellinsen.

Angénieux28mmf3,5_900

Der früheste Wettbewerber dazu tauchte meines Wissens in der BRD 1956 mit dem Ultra-Lithagon 28mm f3.5 von Enna auf (ebenfalls 6 freistehende Einzellinsen). Das entsprechende ISCO-Westron 28mm f4.0 taucht erst 1961 auf – 3 Jahre nach dem Westron 24mm f4.0!

Zeiss Jena und Zeiss-Ikon West haben beide diese Brennweite 28mm damals nicht „bedient“ – dafür war in der DDR Meyer-Optik Görlitz zuständig (bis auch dieser ruhmreiche Name in dem Großkonzern „Pentacon“ unterging). Dort brauchte man noch etwas Zeit – das Lydith 30mm f3.5, für das schon 1958 Schutzschriften eingereicht war, wurde schließlich erst 1963 ausgeliefert. Mit Patent von 1964 folgte dann das Orestegon 29mm f2.8 (7-Linser) – später hieß es Pentacon 29mm f2.8.

Die japanischen SLR-Hersteller waren ja gerade dabei, ihre Systeme aufzubauen: ein Nikkor 28mm f3.5 gab es erst 1959, ein Auto-Takumar 28mm f3.5 erst ab 1962. Canon baute 28er erst ab der Einführung des FL-Bajonetts (1964).

Außer den beiden Meyer-Optiken besitze ich keine weiteren frühen Objektive in diesem Brennweitenbereich.

Ich war später kein großer Anhänger des Brennweitenbereiches 28mm, weshalb ich auch kein entsprechendes Leica-Exemplar besitze und auch keine wirklich moderne 28mm-Linse. Ausnahme ist die der Zeit um 1975/80, als erste lichtstarke Typen aufkamen (siehe Vivitar Serie1). Wie man der Tabelle entnehmen kann, können Zooms bis f2.8 heute die Funktion gut übernehmen – man muss dann deren Größe allerdings in Kauf nehmen wollen.

Dagegen gestellt:

  1. Meyer-Optik Goerlitz Lydith 30mm f3,5 (1958/60/63)
  2. Meyer-Optik (Orestegon) Pentacon 29mm f2,8 MC (1964)
  3. Olympus OM 28mm f2,8 (1973)
  4. Vivitar Serie1 28mm f1,9 (1975)
  5. Contax G Zeiss Biogon 28mm f2,8 (1994)
  6. Canon EF 28mm f1,8 (1995)
  7. Extra: Tamron Zoom 28-75mm f2,8 bei 28mm (2018)

Hier der Auflösungsvergleich als Tabelle:

Angénieux28 und Co Aufl2

Vier_28er
Die wichtigsten Vergleichs-Kandidaten v.l.n.r.: Angénieux 28mm f3.5  –  Lydith 30mm f3.5 Meyer/Pentacon 29mm f2.8 – Olympus OM 28mm f2.8 
Vier_28er_2
Die wichtigsten Vergleichs-Kandidaten v.l.n.r.: Angénieux 28mm f3.5  –  Lydith 30mm f3.5 –  Vivitar Serie1 28mm f1.9   –   Canon EF 28mm f1.8

Bei dem Angénieux Retrofocus 28mm f3.5 ist – nun bei 75° Bildwinkel – die Auflösung im Vergleich zum 35mm-Objektiv in Rand/Ecke geringfügig reduziert (auch abgeblendet – bei Offenblende liegt die Ecke jetzt bei 31 Linien/mm). Aber die Auflösungswerte sind exzellent für den zeitgenössischen Analog-Standard. Die Verzeichnung ist noch einmal verringert bei jetzt besseren CA-Werten. Tatsächlich ist die Verzeichnung mit Abstand die geringste mit allen 28mm-Vergleichsobjektiven in meinem 28mm-Vergleich.

Wieder kann man sagen, dass der allgemeine Stand der Technik erst Anfang der 1970er Jahre wirklich über das Angénieux hinaus geht: das Olympus OM 28mm f2.8 ist in diesem Vergleich die neue Landmarke (ab 1973) für die nächsten 20 Jahre.

Das Vivitar Serie1 28mm f1.9 erreicht bei Blende 2.8 übrigens ziemlich genau die Auflösungswerte des Olympus 28mm f2.8 und hat darüber hinaus noch die Besonderheit des „floating element“ Designs. Tatsächlich wude es damals von Modern Photography in höchsten Tönen gelobt:

ResolChartVS1_28f1,9_ModernPhot

Dabei wird die Schwäche mit „flare“ bei voller Öffnung (Streulichtanteile von überkorrigiertem farbneutralem Astigmatismus, die bei Blende 4 praktisch verschwinden) erwähnt, die man an der MTF-Kuve unten auch sehen kann.

Das ContaxG Biogon 28mm f2.8 (tatsächlich einmal ein 28er von Zeiss… 1994) ist im Aufbau ein Meßsucher-Objektiv, auch wenn die Kamera automatisch fokussiert! Die extrem schlechten Rand/Ecken-Auflösungswerte dieses Objektivs sind nicht real: durch den sehr nah an die Filmebene heran reichenden hinteren Linsenscheitel (kleine hintere Schnittweite) ist dieses Objektiv nicht geeignet für einen digitalen Sensor wegen der am Rand extrem flach auf den Sensor einfallenden Strahlen. Das ist aber heute bereits weitgehend bekannt – alle Biogone sind an Digitalsensoren sehr schwach im Außenbereich des Bildfeldes.

Das 1995er Canon EF 28mm f1.8 (1995) ist noch nicht eine Optik auf dem heutigen Stand der Technik. Es ist in fast allen Auflösungswerten schlechter als das über 20 Jahre ältere Vivitar Serie1 ! Nur Chroma und Verzeichnung sind etwas besser. Ich kenne den Grund nicht. Es gehört eben nicht der L-Klasse an …  Aber es gibt auch Positives zu berichten: Die optimale Blende ist bereits bei f8 erreicht. An der MTF-Kurve kann man erkennen, dass das Objektiv bei niedrigen Frequenzen einen deutlich höheren Bildkontrast liefert als die älteren Systeme. Trotz der schwächeren Auflösung im höheren Frequenzbereich wirken die Bilder daher insgesamt „knackiger“. Auch die Kantenschärfe ist verbessert.

Die ganz große Überraschung des Vergleiches ist das frühe Meyer-Optik Lydith 30mm f3.5 von 1958: die Auflösungsleistung in der Bildecke ist zeitgenössisch gesehen überragend. Es ist ein 5-Linser!!! und bei Offenblende eine Klasse besser als der 7-Linser „Orestegon 29mm f2.8“ – und auch besser als das Angénieux! Die Schwäche der 29er Optik läßt sich vielleicht nach „zeissikonveb.de“ daraus erklären, dass aus Preisgründen überwiegend (6 von den 7 Linsen!) 30er-Jahre-Glastechnologie zum Einsatz kam. Zur Ehrenrettung muss man sagen, dass das Orestegon bei Blende 4 die Werte des Lydith bei Blende 3.5 erreicht oder übertrifft und die CA-Werte und die Verzeichnung deutlich verbessert sind. Das Lydith überragt noch ein ganzes Jahrzehnt die üblichen (meist japanischen) „third-party-lenses“, wie das „normale“ Vivitar 28mm f2.5 in diesem Vergleich – und das war eines der besseren Fremdobjektive.

Fazit: Wieder kann man sagen, dass dieses Angénieux 28mm ein Spitzenobjektiv seiner Zeit ist – mit sehr langer „Halbwertzeit“ bezüglich des Standes der Technik. Es wurde dann ja auch in dieser Form bis 1971 geliefert – 18 Jahre lang. Einen Nachfolger gab es nicht.

Ich weise darauf hin, dass die Auswahl der Vergleichsoptiken nicht marktrepräsentativ ist sondern sich aus dem Bestand meines Objektivbesitzes ergab. Ein wirklich „modernes“ 28er Objektiv war diesmal nicht dabei – außer dem Tamron-Zoom mit den wirklich erfreulichen Werten.

Untenstehend sehen Sie die einzelnen Meßergebnisse der relevanten Optiken bei Offenblende und bei optimaler Blende:

Vgl_Angén28f3,5_f3,5

Vgl_Angén28f3.5_f11
Angénieux Retrofocus 28mm f3.5 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_Lydith30f3,5_f3,5

Vgl_Lydith30f3,5_f11
Meyer-Optik Lydith 30mm f3.5 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_OM28f2,8_2,8

Vgl_OM28f2,8_11
Olympus OM 28mm f2.8 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_VS128f1,9_f1,9

Vgl_VS128f1,9_f11
Vivitar Serie1 28mm f1.9 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_CAF28f1,8_f1,8-n

Vgl_CAF28f1,8_f8-n

Copyright Fotosaurier, Berlin, 4. März 2020

 

 

 

Die Qualität historischer Angénieux Foto-Objektive – 1. Festbrennweiten, 1b. Retrofocus-Weitwinkelobjektive, A. 35mm f2.5

Folgend untersuche ich die drei Retrofocus-Objektive, die Angénieux für das Kleinbildformat entwickelt und produziert hat:

  • Retrofocus 35mm f2.5 (R1) – öffentlich vorgestellt in Paris 1950, ab 1953 in großen Mengen geliefert (ca. 45.000 p.a.! – die Hälfte nach USA))
  • Retrofocus 28mm f3.5 (R11) – ebenfalls ab 1953 geliefert
  • Retrofocus 24mm f3.5 (R51/61) – ab 1957 geliefert

(Im Beitragsbild oben von links nach rechts.)

Es gab keine Nachfolge-Modelle und auch kein 20mm-Weitwinkel mehr. Pierre Angénieux sah offensichtlich aufgrund der geringen Stückzahlen  und der Schwierigkeit, ausreichend hohe Preise im Amateur-Fotomarkt durchzusetzen (anders als im Cine-Sektor) zu wenig wirtschaftlichen Nutzen in diesem Segment.

Zur Entwicklung des Retrofocus-Weitwinkelobjektivs und der Geschichte der Firma Pierre Angénieux lesen Sie bitte hier in meinem Blog nach:

Sternstunden der Foto-Optik – Pierre Angénieux

A – Angénieux Retrofocus 35mm f2,5 (R1), 1950-Patent und öffentl. Vorstellung in Paris/1953-Lieferung in Großserie: das berühmte allererste Retrofokus-Objektiv (hier für die Exakta). Zu dem gibt es natürlich keine echten Vorläufer.

Angénieux35f2,5_900
Angénieux Retrofocus 35mm f2.5 (R1) in Fassung für Exakta (E4) – erstes Retrofokus-Weitwinkelobjektiv (1950 in Paris vorgestellt)

Dagegen gestellt (siehe Tabelle unten):

  1. Carl Zeiss Jena Flektogon 35mm f2,8 (Prototypen auch 1950 / Serie 1953)
  2. Schneider Curtagon 35mm f2,8 (1958)
  3. Carl Zeiss Jena Flektogon 35mm f2,8 (2. Rechnung – 1961)
  4. Canon Rangefinder (M39) 35mm f2,0 (1962)
  5. Minolta MD 35mm f1,8 (1968)
  6. Canon FD 35mm f2,0 (1971 – konkave Frontlinse!)
  7. Leica R Summicron II 35mm f2,0 (1977)
  8. State-of-the-art für spiegellos: Sony Zeiss Sonnar 35mm f2,8 (E-Mount, 2015)
  9. Zoom-Vergleich: Tamron 28-75 f2,8 bei 35mm (2019 – mindestens so gut wie Festbrennweite!)

Machen wir uns bewußt, dass wir hier Anfang der 1950er Jahre beim Erscheinen der ersten Retrofokus-Weitwinkelobjektive für Spiegelreflex-Kameras an dem Scheideweg stehen, der den Erfolg der SLR erst ermöglichte: das Hindernis des großen Auflagemaßes, das durch den Spiegel bedingt ist, wird überwunden!

Hier noch ein kleines Detail am Rande: P.Angénieux war bereits ab Erscheinen der Alpa-Reflex SLR-Kamera (1944) in Kontakt mit dem Hersteller und lieferte auch unmittelbar Mitte der 1940er Jahren Normalobjektive und Teleobjektive zur Alpa. Da die Alpa-Reflex ein ungewöhnlich kleines Auflagemaß von 37,8 mm besaß (Exakta und fast alle anderen liegen bei 44,5 mm!) schaffte es Angénieux bereits in den Jahren ab 1947 ein 35mm-Weitwinkel für die Alpa zu liefern – das „Typ X1“ 35mm f3,5, ein ganz normaler Tessar-Typ. Das einzige nicht-Retrofokus-35er für eine SLR, das mir bekannt ist. Es sollen ca. 200 Objektive gefertigt worden sein. Für alle anderen Kleinbild-SLR galt damals noch die 40mm-Grenze der Brennweite. Wer Lust hat sich von der Qualität eines normalen 40er-Jahre-Tessars zu überzeugen, muss allerdings für das 38 Gramm schwere Objektiv heute mit einem Preis von ca. € 2.500 rechnen …

Besonders gespannt war ich natürlich auf den Vergleich mit dem zeitgenössischen „Rivalen“, dem Carl Zeiss Jena Flektogon 35mm f2.8. Hier gibt es das Problem, dass im Zeiss-Jena Werk (unter Dr. Harry Zöllner und Rudolf Solisch) es für das ursprüngliche Flektogon 35mm zwei optische Konstruktionen gab (1953 und 1961) – wobei die zweite Variante nacheinander (bis 1976, als es durch das neue 35mm f2,4 ersetzt wurde) in drei verschiedenen Gehäusedesigns vorliegt: Guttapercha, Zebra und Gummiring. Viele der ganz frühen Exemplare, die am Gebrauchtmarkt gehandelt werden, haben mehr oder weniger kräftige Schleier und sind teilweise völlig unbrauchbar. Nach einiger Suche, fand ich von der ersten Version in Alu/Silber (M42) eines mit schön klaren Linsen – meine zweite Version (Exakta) hat das Gehäuse mit Gummiring (das „jüngste“ – nach 1975 – und seltenste) und ist noch in gutem, klaren Zustand.

Hier die Auflösungsvergleich-Tabelle:

Ich weise darauf hin, dass die Auswahl der Vergleichsoptiken nicht marktrepräsentativ ist sondern sich aus dem Bestand meines Objektivbesitzes ergab.

Vergleich 35mm-Objektive
Auflösungsvergleich einiger 35mm-Brennweiten für SLR ab 1950 bis heute – gemessen an Kamera Sony A7Rm4 (60 MP) – Nyquist-Frequenz: 3.168 LP/PH (Imatest)

In den 50er Jahren kamen unmittelbar nach dem 35er Angénieux praktisch von allen Objektivherstellern äquivalente Retrofokus-Weitwinkelobjektive für SLR heraus:

Retro-Flekto_Curta
Erstlinge im physischen Vergleich: Angénieux Retrofocus 35f2.5 (Exakta), Zeiss Jena Flektogon 35f2.8 (M42), Schneider Curtagon 35f2,8 (Alpa)

Man sieht gleich auf diesem Bild, dass die zunächst exorbitanten Dimensionen der Frontlinsen und der Baulängen schnell schrumpften, nachdem man davon abging, eine einfache Zerstreuungslinse vor ein „Grundobjektiv“ zu setzen sondern anstatt dessen ein „integriertes“ Gesamtobjektiv entwarf. Ich verzichte hier auf Linsenschnitte, da diese bereits überall dokumentiert sind – der Artikel würde sonst vollends ausufern. Demnächst werde ich noch entsprechende Literaturangaben hinzufügen.

Weitere wichtige Neuerscheinungen der ersten Jahre (neben den Objektiven in der obigen Tabelle) waren z.B.: Enna Lithagon 35mm f4.5 (1953), Meyer-Optik Primagon 35mm f4.5 (1956),  Schacht Travegon 35 f3.5 R (1956), Topcon Topcor 35 f2.8 (1957), Zeiss-Ikon Contarex 35 f4.0 (1957), Takumar 35mm f4.0 (1957), Auto-Takumar 35mm f2.3 (1958), Enna Super-Lithagon 35mm f1.9 (1958), Isco Westron 35mm f3.5 (1958), Canon 35mm f2.5 (R-Bajonett – 1960), Nikkor 35 f2.8 (1962), Nikkor 35 f2.0 (1965).

Als gesichert kann gelten, dass das Zeiss Jena (interne Prototypen 1950 sicher bekannt!) und Angénieux (Muster 1950 öffentlich auf dem Fotosalon in Paris vorgestellt!) tatsächlich gleichzeitig an ihren Produkten arbeiteten. Klar ist auch, dass Angénieux mit dem früheren Patent und der früheren Veröffentlichung (beides 1950) die Nase vorne hatte. Jenas Prototypen von 1950 basierten auf einer Rechnung von 1949 und wurden wieder verworfen. Die Optiken, die 1953 geliefert wurden basierten auf einer neuen Rechnung von 1952! Wer als erster hinaus geht, trägt immer das Risiko, dass es noch keine Erfahrungen mit dem neuen Produkt gibt. Dass die Nachfolger davon lernen konnten, bis sie 2-4 Jahre später nachzogen, ist gewiss – aber wieviel? Damals wurde Optik noch manuall gerechnet. Es heiß, dass zwei Konstrukteure für ein typisches Linsensystem 2 Jahre Rechen-/Entwicklungszeit brauchten. Angénieux behauptete, dass er 10-fach schneller rechnete (ohne Computer), was plausibel erscheint, wenn man sich die schnelle Folge der neuen Objektive in dieser kleinen Firma Mitte der 1950er ansieht.

Zur optischen Qualität (einige Messdiagramme finden Sie unterhalb des Textes):

Ich betrachte Angénieux‘ ersten Entwurf als ausgewogen – die Auflösung am Rand liegt auch im Vergleich zu den bis dahin üblichen besten Weitwinkel-Meßsucherobjektiven im guten bis sehr guten Bereich. Zum Verständnis: 406 Linienpaare je Bildhöhe (LP/PH) bei Offenblende (f2.5!!) im Rand/Ecken-Bereich entsprechen 34 Linien/mm – was bei Modern Photography für Offenblende Weitwinkel an Rand/Ecke damals zu einem „Excelent“-Rating geführt hätte. Abgeblendet erreicht das Objektiv für die damalige Analog-Fotografie völlig gleichmäßige Auflösung – und übertrifft in der Mitte (bis 50% des Bildkreises) die Nyquist-Frequenz der Sony A7Rm2/3! Hier noch die bildliche Veranschaulichung der 406 LP/PH bzw. 34 L/mm in der Bildecke:

#TargetCornerUR_corr_AngénRetro35f2,5_f2,5
Angénieux 35mm f2.5 bei f2.5 in der unteren rechten Bildecke – hier ist die Vignettierung kompensiert: sichtbare Auswirkung der hohen CA auf den sagittalen Strahl (60 MP – 100%-Ansicht)

Bei allen Angénieux-Weitwinkeln (am stärksten beim 24mm f3.5!) hat man größten Wert auf eine sehr geringe, im Bild fast nicht mehr wahrnehmbare VERZEICHNUNG gelegt – und dafür erhebliche CA-Werte in Kauf genommen.

Über die nächsten 20 Jahre wird laut Tabelle offensichtlich die Offenblenden-Ecken-Auflösung der Weitwinkel nicht gravierend gesteigert werden – erst ab Anfang/Mitte der 1970 gibt es einen wirklichen Durchbruch mit neuen Glassorten (und vollends dann ab ca. 1983/84 mit ED-Glas): schönstes Beispiel das Summicron II 35mm f2.0 von 1977!

Anders sieht es beim Flektogon 35mm f2.8 von 1950/1953 aus Jena aus: die Rand-/Ecken-Auflösung bei Offenblende ist „unterirdisch“ und kommt auch bei Abblenden nicht ausreichend hoch. Die Mittenauflösung erscheint vor allem beim Abblenden stark übersteigert. Das war leider ein Flop… Daher sah sich Zeiss Jena veranlasst, zehn Jahre später (1960) eine Neurechnung durchzuführen um konkurrenzfähig zu werden – wahrscheinlich ist es eine der ersten Objektiv-Berechnungen, die mit dem neuen Computersystem in Jena (OPREMA) durchgeführt wurde (?). Diese Neuberechnung des Flektogon 35mm f2.8 (geliefert ab 1961) ist dann ein Spitzenoptik nach dem damaligen Stand der Technik! Anscheinend war es notwendig, dafür wesentlich höhere Verzeichnung und deutlich höhere CA in Kauf zu nehmen als ursprünglich geplant.

Zur Illustration hier die Bilder der Auflösungs-Targets in der unteren Rechten Ecke (UR) bei Offenblende (dunkel, da ich die Vignettierung nicht korrigiert habe):

Vergleich_35mm_EckeUR
Auflösungs-Targets bei Offenblende untere Rechte Ecke (UR) v.l.n.r.:                  Angénieux35mm,                   Flektogon35mm-I,                          Flektogon35mm-II

Bei der Neugerechnung ist die Eckenauflösung nun erkennbar besser als beim Angénieux – Zeiss-Jena ist rehabilitiert!

Bemerkenswert finde ich, wie der Schneider-Curtagon-Entwurf die Größe des Objektivs verringert und gleichzeitig die Qaulität deutlich verbessert. Nicht nur die Auflösung übertrifft deutlich ihre Vorgänger-Konkurrenten – auch hat es noch geringere Verzeichnung als das Angénieux und exzellente CA-Werte! Das Schacht Travegon 35mm f3.5 R von 1956 hat etwa das gleiche Qualitätsniveau wie das Curtagon – ist aber nicht ganz so kompakt.

Das Canon FD 35mm f2.0 S.S.C. ist der Exot mit der nach vorne konkaven Frontlinse und Thorium-Glas (radioaktiv?). Es ist das größte und massivste der hier geprüften 35er – und ziemlich gleichauf in der optischen Leistung mit dem Minolta W.Rokkor-X 35mm f1.8, das im Vergleich ein Zwerg ist. Diese um 1970 entstandene Objektiv-Gruppe stellt eine  optische Verbesserung gegenüber dem Angénieux dar – aber nur graduell (besonders bei der Chromatischen Aberration – und abgeblendet am Rand). Bei der Lichtstärke liegt natürlich der eigentliche Fortschritt dieser Objektive – bei Erhaltung des Qualitätsniveaus – eine ähnliche Herausforderung wie es die weitere Vergrößerung des Bildwinkels darstellen wird. Das schon 3 Jahre vor dem Minolta-Objektiv entstandene Nikkor mit Lichtstärke 2.0 kenne ich leider nicht.

Schon in meinen Analog-Fotografie-Zeiten war das Summicron-R II 35mm f2.0 (1977) die absolute Referenz – eine wahre Freude, nicht nur in der Auflösung (die notwendig – aber nicht ALLES ist!). Überraschend finde ich, dass diese Optik noch heute (an hochauflösenden DigitalSensoren) so gut mithalten kann!

Mein „modernstes“ 35er, das (für die spiegellose Digitalkamera gerechnete) Zeiss Sony Sonnar 35mm f2,8 ist ein auf extreme KOMPAKTHEIT getrimmtes Objektiv mit sehr geringer Verzeichnung und CA, das dafür auf Spitzenwerte der Auflösung verzichtet. Es gibt heute extreme, lichtstarke Rechnungen mit 14 – 16 Linsen, die über 1 kg wiegen und schon bei Offenblende die Leistung einer 60 MP-Kamera über das gesamte Bildfeld ausreizen.

Fazit: das Angénieux Retrofocus 35mm f2.5 hat zu Recht den Ruf von Angénieux als Innovator und Hersteller von Objektiven sehr hoher Qualität begründet – zumal es praktisch bis Anfang der 70er Jahre auf dem Stand der Technik blieb! Wir werden in Kürze weiter sehen, wie er sich bei den folgenden kürzeren Weitwinkel-Brennweiten geschlagen hat.

AngénRetro35f2,5_f2,5_Vgl

AngénRetro35f2,5_f11_Vgl
Angénieux Retrofocus 35mm f2.5 bei Offenblende (oben) und optimaler Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_Flektogon35-I_f2,8

Vgl_Flektogon35-I_f11
Zeiss Jena Flektogon I  35mm f2.8 bei Offenblende (oben) und optim. Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Flektogon35f2,8-5501_f2,8_Vgl

Vgl_Flektogon-II_f8
Zeiss Jena Flektogon II  35mm f2.8 bei Offenblende (oben) und optim. Blende 8 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_Curtagon35f2,8

Vgl_Curtagon35f2,8_f11
Schneider Curtagon 35mm f2.8 bei Offenblende (oben) und optim. Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_SummicronR35f2,0_2,0

Vgl_SummicronR35f2,0_f8
Leitz Summicron-R 35mm f2.0 II bei Offenblende (oben) und optim. Blende 8 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Vgl_SonySonnar35f2,8_f2,8

Vgl_SonySonnar35f2,8_f11
Sony Sonnar 35mm f2.8 (E-Mt) bei Offenblende (oben) und optim. Blende 11 (unten) – Kantenprofil, MTF-Kurve und Auflösung über Bildkreisradius

Copyright Fotosaurier, Berlin, 3. März 2020

 

 

Die Qualität historischer Angénieux Foto-Objektive – 1. Festbrennweiten 1a. Porträt-Teleobjektiv 90mm f2.5

Autor: fotosaurier, Berlin, 13. Februar 2020

Dieses Objektiv wurde ab 1951 (oder 1954 … verschiedene Angaben) ausgeliefert.

Angénieux90f2,5_900
Angénieux 90mm f2.5 in ALPA-Fassung – Modell Y12 (vier einzelne Linsen)

Für alle, die den Namen Angénieux kennen, gehören diese Objektive zu den legendären historischen Foto-Produkten, die nicht nur zeitgenössisch an der Spitze lagen sondern auch führend und innovativ gegenüber dem Wettbewerb einzustufen waren.

Über Pierre Angénieux und die Firma können sie hier meinen Überblick-Artikel lesen: http://fotosaurier.de/?p=1243sternstunden-der-foto-optik-pierre-angenieux

Soweit das Vorurteil! … aber stimmt das auch? – und was kann man davon anhand von 50-70 Jahre alten gebrauchten Objektiven heute noch feststellen?

Alle Objektive, die ich hier untersuche, besitze ich. Ich will hier nicht mit meinen Testbedingungen langweilen sondern habe das Thema in einen eigenen Artikel „ausgelagert“. Im Prinzip und kurz umrissen: ich fotografiere mit den Objektiven , die ich an die jeweilige Digitalkamera (Sony A7Rm4 oder Fujifilm GFX100 im 35mm-Modus – beide ca. 60 MP) adaptiere, eine Original-IMATEST-Chart (SFRplus) unter möglichst kontrollierten Bedingungen ab und analysiere sie mit der IMATEST-Software. Mehr dazu unter diesem Link.

Als optische Qualitätsmerkmale ziehe ich heran:

  1. MTF-Kurve (MTF-Wert über Frequenz)
  2. Radiale MTF-Verteilung (MTF30-Auflösung über Abstand von der Bildmitte)
  3. Mittlerer, gewichteter Wert MTF20/MTF30/MTF50 (über gesamte Bildfläche)
  4. Kantenprofil und CA (Bildmitte, lokal)
  5. Chromatic Aberration R-G, B-G radial über die gesamte Bildfläche (nur in ausgewählten Fällen)

Als Auflösungswert benutze ich grundsätzlich Linienpaare per Bildhöhe (LP/PH). Die Bildhöhe ist hier immer 24 mm (Querformat). Nach meinen Erfahrungen ergeben die Auflösungswerte der MTF30 den realistischsten Vergleichswert für die allgemeine bildliche Fotografie.

Mein persönliches Interesse liegt dabei hierauf:

  1. welche optischen Leistungen besitzt ein historisches Objektiv?
  2. wie liegt diese im Vergleich zu zeitgenössischen anderen Objektiven?
  3. wie sieht der Vergleich zu den neueren und modernsten Optiken von heute aus?

Auf die Problematik, dass man da bis zu 100 Jahre alte, gebrauchte Objektive gegebenenfalls fabrikneuen, modernen gegenüber stellt, gehe ich in meinem Beitrag zu meinen Testmethoden näher ein. (Nobody’s perfect!)

Ich erstelle diese Testergebnisse bei allen Blenden (bis max. f16) und stelle hier im Vergleich die Auflösung in der gesamten Bildebene für die jeweilsoptimalen Blende“ dar – die natürlich zwangsläufig einen Kompromiss aus verschiedenen Eigenschaften darstellt. Im Laufe der Optik-Geschichte hat sich die für die Auflösung (und deren Konstanz über die Bildebene!) günstigste Blende ständig weiter zu größerer Blendenöffnung (kleinere WERTE) verschoben. Die ältesten Objektive (bis ca. 1965) wurden beim Abblenden meist bis zu Blende 11 immer besser in der Auflösung und Kontrast – in Ausnahmen noch weiter. Allerdings war die „Kantenschärfe“ auch damals meistens schon optimal bei Blende 5,6. Bis in die 80er Jahre liefert dann Blende 8 die beste Auflösung – später Blende 5,6. Heutige (meist asphärische) Optiken können schon bei Blende 2,8 bis 4,0 ihre höchste Auflösung erreichen. Dies habe ich hier berücksichtig und die Test-Blende entsprechend gewählt.

In der linken Spalte jeweils die Auflösung (Linienpaare/Bildhöhe – LP/PH bei MTF30, also dem MTF-Wert bei 30% Kontrast!) über der Distanz von Bildmitte (0)  bis zur Bildecke (100). Die Nyquist-Frequenz des Sensors entspricht stets der Wert 3168 LP/PH (Linien-Paare, nicht Linien!). Zusätzlich zur Auflösungskurve ist die Auflösung bei MTF30 getrennt für tangentiale und sagittale Strukturen als „gewichtetes Mittel“ über die ganze Bildfläche angegeben.

Verwendet wurden handelsübliche Adapter an den Sony-E-Mount – diese sind vielleicht die größte (mechanische) Fehlerquelle innerhalb dieser Tests.

—> Hinweis: Diese Untersuchungen an älteren und gebrauchten historischen Objektiven liefert Messergebnise für das Auflösungsvermögen, Verzeichnung und Chromatische Aberrationen der jeweiligen Objektive unter reproduzierbaren und kontrollierten Beleuchtungsverhältnissen (genormte, reflexfrei beleuchtete Chart). Das bedeutet nicht, das das jeweilige Objektiv unter allen denkbaren REALEN Lichtverhältnissen an der Digitalkamera entsprechend hochwertige Bildergebnisse erzielt – besonders im Gegenlicht können Streulicht und andere unangenehme Effekte auftreten, die bei jedem Digitalsensor unterschiedlich sein können!

Kamera ist hier die Sony A7RMark4 mit 60 MP.

Ich beginne mit meinem ältesten Nachkriegsobjektiv (die Retrofocus-Objektive und die Zooms werden in jeweils eigenen Artikeln besprochen werden):

Angénieux Porträt-Tele 90mm f2,5 von 1951 (Alpa-Anschluß): es ist, wie die meisten der Vergleichsobjektive (Ausnahme Kinoptik und Apo-Macro-Elmarit), auch ein Ernostar-Typ (vier freistehende Linsen) – die Sonnare sind ja auch ein (ebenfalls von Bertele) weiterentwickeltes Ernostar… und das  Olympus sehe ich als eine Art „Hybrid“ aus Gauss-Typ und Sonnar.

Dagegen gestellt:

  1. Ur-Ernostar 100mm f2,0 (1923)
  2. Kinoptik Apo 100mm f2,0 (ca. 1950)
  3. Canon Rangefinder (M39) P 85mm f1,8 (1960)
  4. Zeiss Sonnar 85mm f2,0 (Contarex 1961)
  5. Vivitar Serie1 90mm f2,5 Macro (ca. 1977)
  6. Leitz Apo-Makro Elmarit 100mm f2,8 (1987)
  7. Zeiss Sonnar für Contax G 90mm f2,8 (1994)
  8. Leica M Apo-Summicron ASPH 90mm f2,0 (1998)
  9. State-of-the-art: Sony GM 85mm f1,4 (Spiegellos, E-Mount, 2018)

Sorry – das sind eine Menge Daten – und es sind einige „LEGENDEN“ darunter! Wichtig war mir, die beiden „Rangefinder“-Optiken (Canon M39 und Leica M) mit einzustreuen, da ja eine weitere Legende lautet: Messsucher-Kamera-Objektive sind grundsätzlich besser als die SLR-Optiken…

Für die, denen „Contax G“ kein Begriff ist: Eine geniale, späte (und sehr schöne!) Messsucher-Kamera von Kyocera die (1994!) mit Autofokus ausgestattet war – einige der Objektive dazu gehören zu den besten, die je gebaut wurden – und sogar ein Hologon 16mm wurde dieser Kamera spendiert (eine eigene Legende). Aber Biogon 21mm und Hologon 16mm sind an Digitalsensoren nicht brauchbar (zu kurzer Abstand der letzten Linse zum Sensor – zu flacher Strahleneinfall).

Hier die von mir gemessenen Auflösungsdaten dieser Optiken in einer Tabelle:

Angénieux90 und Co Auflösungsvergleich
Auflösungs-Vergleich Angénieux 90f2,5 mit zeitgenössichen,  jüngeren und älteren Optiken

Wie schon erwähnt sind die MFT30-Auflösungswerte in der Hauptspalte 4 ein gewichtetes Mittel über die gesamte Bildfläche! (Zentrum Gewicht 1, Übergang Gewicht 0.5, Ecken Gewicht 0.25). Angegeben sind bei jedem Objektiv die Werte für Offenblende und die optimale Blende (bei den ältesten und auch beim Angénieux sind das Blende 11, je jünger die Optik, desto weiter geöffnet wird das Optimum erreicht!). Siehe auch Artikel über das Testverfahren.

Da es bei älteren Optiken erheblichen Randabfall der Auflösung gibt, habe ich die Mittelwerte NUR für das Bild-Zentrum und NUR für alle Bild-Ecken (ohne Gewichtungsfaktor!) hinzugefügt (Spalten 5 + 6).

Wenn ein Objektiv nicht perfekt zentriert ist, können am Rand oder in ein oder zwei Ecken ziemlich niedrige Werte auftreten – diese sind in die Mittelwerten hier mit eingegangen – die ziehen also das Gesamtergebnis deutlich RUNTER!

Beruhigend für mich war, dass das modernste Objektiv, das auch noch vom Hersteller für genau diesen Sensor entwickelt wurde (Sony GM 85f1,4) tatsächlich – und schon bei f4,0 – das Beste ist und der Mittelwert bei 98% der Nyquist-Frequenz der 60 MP-Kamera liegt – wofür hätte ich sonst das viele Geld hingelegt? (…auch ist das Objektiv im Zustand ja praktischt neu und wird ohne Adapter benutzt!)

Aber nun zu unserem Kandidaten Angénieux 90mm f2,5:

Der Veteran, der ja bis zu 69 Jahre alt sein könnte, mit Gebrauchsspuren, Putzspuren, Staub in der Optik und einer der ersten „Nachkriegsvergütungen“, erreich im Maximum (f11) einen Mittelwert von 85% Nyquistfrequenz über die gesamte Bildfläche (2.708 LP/BH) und in der von mir gewählten Vergleichsgruppe (praktisch alles Optik-LEGENDEN!) dauert es 26 Jahre, bis ein 90er Objektiv erscheint (VivitarSerie1 90f2,5), das das Angénieux in der Maximalauflösung übertrifft. Das zehn jahre später (1961) herausgekommene Zeiss Sonnar 85mm f2.0 zur Contarex ist in der Auflösung nicht besser – bei Offenblende f2.0 zeigt es eine Schwäche in der MTF-Kurve, die bei sehr niedrigen Frequenzen (links im Diagramm) relativ steil abfällt. Nach dem VivitarSerie1 gibt es in meiner Sammlung erst 40 Jahre später ein Objektiv, das dieses übertrifft! (Das Apo-Makro-Elmarit 100 übertrifft es nur bei Offenblende.)

Die größten Fortschritte in der Foto-Optik wurden seit den 1950er Jahren ganz offensichtlich in der Offenblenden-Auflösung und dem Randabfall (bei niedrigen Blenden) gemacht.

Im Anhang kann man Messkurven  einiger der Objektive ansehen.

Hier die Darstellung der einzelnen Messpunkte bei der optimalen Blende (f11) am Angénieux 90mm. Hier sind die Auflösungswerte am Rand durchgängig (und sehr symmetrisch) etwas höher als in der Mitte:

Angén90f2,5_f11_Multi-ROI_N

Ich habe das neu fokussiert überprüft – offensichtlich ist es kein Zufall sondern in der Schärfe-Ebene tatsächlich reproduzierbar.

Eines der Meßergebnisse am Angénieux 90mmf2,5 ist aber in hohem Maße überraschend für ein Objektiv jener Zeit: die Chromatische Aberration (Farbfehler). IMATEST unterscheidet nicht zwischen Längs- und Quer-Farbfehler sondern misst den in der Bildebene auftretenden visuellen Farbfehler. (Das Apo-Kinoptik kann da nicht im Entferntesten mit halten – es hat einen 20-fach größeren Farbfehler als das Angénieux…)

Hier Vergleichsdiagramme für sechs dieser Optiken (1951 und jünger): das zeitgenössische Contarex-Sonnar hat einen ca. 2,5-fach größeren Farbfehler, das nagelneue SonyGM ist graduell besser .. hier ist allerdings die eigentliche Sensation das VivitarSerie1 mit Farbfehlern nahe Null! Achtung: die Ordinaten-Maßstäbe in den Grafiken sind leider nicht gleich… bitte links auf die vetikale Achse schauen!

Ang90_Vergl_CA1

Ang90_Vergl_CA2

Ang90_Vergl_CA3

Fazit:

Angesichts der guten Auflösungsergebnisse auch über das ganze Bildfeld und der extrem guten CA (nicht nur für diese Zeit) war das Angénieux ein herausragendes optisches Produkt. Die optischen Berechnungsmethoden, die Angénieux während des Weltkrieges entwickelt hatte, sollen ja (manuell!) 10-fach zeitlich effektiver gewesen sein, d.h. dort konnte man in gleicher Zeit 10-mal mehr Varianten berechenen, um die beste Lösung zu finden! Das vorliegende Ergebnis widerspricht dem nicht… Das Modell wurde bis 1968 geliefert (für Alpa alleine – in Fassung „E4“ – wurden 1.500 Stück gebaut). Der Kompromiss, den Angénieux machte, um diese exzellenten Leistungen zu erzielen, lag offensichtlich darin, dass er -1,0% Verzeichnung zuließ! Für ein Portrait-Objektiv kein wirklich großes Problem.

Das Angénieux 90mm f2.5 für Alpa (daher die Alpa-interne-Bezeichnung „Alfitar„) ist der zweite Typ mit 90mm Brennweite: Typ Y12. Es ist ein Vierlinser – 4 freistehende Linsen, Ernostar/Sonnar-Typ – mit einer Nachkriegs-Einschicht-Vergütung. Die Verarbeitung (Voll-Metall-Fassung, vernickelt) ist olympisch und auf ewige Haltbarkeit ausgerichtet. Die Glasflächen meines Exemplars entsprechen im Zustand natürlich dem Alter von fast 70 Jahren – aber gut gepflegt, wenig Putzspuren, kein Schleier.

Gegenüber gestellt sind in der Auflösungs-Tabelle und in Kurven im Anhang (s. unten)  andere Legenden der Foto-Optik im zeitlichen Abstand von jeweils 7 – 20 Jahren bis hin zum State-of-the-Art-Boliden von Sony (2018), der 11 Linsen und Nanobeschichtung (und 11 Blendenlamellen) hat!

Wenn man sich die Auflösungsmessungen an guten Optiken der letzten 100 Jahre ansieht, dann stellt man fest, dass die axiale Auflösungsleistung (Bildmitte)  praktisch auch mit manueller Berechnung  (bis Ende der 1950er Jahre) fast „beliebig“ gut sein konnte – jedenfalls höher als jede analoge Filmemulsion (für normale bildnerische Zwecke) sie jemals ausnutzen konnte. Bei dem fast hundert Jahre alten Ernostar 100mm f2.0 erreicht bei Offenblende die Auflösung in der Mitte bereits die Nyquist-Frequenz der 42 MP Sony A7Rm2.

Der technische Fortschritt in den Linsenkonstruktionen durch neue Gläser und Asphären (bei großen Aufnahmeentfernungen!) drückt sich bezüglich der Auflösung weitgehend an den Rändern und in den Bildecken des Formates vor allem bei Offenblende aus, aber auch darin, dass die optimale Auflösung bei deutlich offenerer Blende erreicht wird. Aber Auflösung ist nicht alles!

Der Fortschritt in der Optik wirkt sich auch in Bezug auf höheren Kontrast bei den niedrigen Frequenzen über die ganze Bildfläche aus. (Zum letzteren trägt erheblich auch die immer raffiniertere Vergütung der Glas-Luft-Flächen bei.) Diese Kontrasterhöhung im niedrigen Frequenzbereich läßt die Bilder „knackiger“ aussehen. In den MTF-Kurven wird dieser Umstand sichtbar dadurch, dass die Kurve nicht von Frequenz Null (Kontrast = 1 ) linear bis zur Nyquist-Frequenz abfällt, sondern DEUTLICH darüber bleibt – sichtbar als „Bauch nach oben“ zwischen 0 und 2000 LP/PH. Moderne Objektive haben in diesem Bereich einen mehr oder weniger langen HORIZONTAL verlaufenden Bereich der MTF-Kurve, der sogar noch über den Wert 1 nach oben gewölbt sein kann (siehe Sony GM 85mm und Apo-Summicron-M 90mm bei Blende 5,6 im Diagramm ganz unten). Das Angénieux 90mm f2.5 besitzt einen sehr ausgewogenen MTF-Kurvenverlauf offen und abgeblendet (damals hatte auch Ang. schon MTF-Messungen eingesetzt!). Einen „Bauch“ in der MTF-Kurve hat sogar schon das alte Ernostar 100 f2.0, und as VivitarSerie1 90mm f2.5 (1977) hat sogar auch schon einen kleinen „Überschwinger“ über den MTF-Wert 1. Es hat außerdem die höchste Auflösung aller Objektive mit 85 – 100 mm Brennweite, die ich bisher gemessen habe (mit Ausnahme des nagelneuen Sony GM 85mm f1.4 von 2018) und dabei Verzeichnung Null und CA nahe Null (über ganze Bildfläche). Ein Ausnahme-Objektiv seiner Zeit (… und massiv wie ein Panzer). Schon Modern Photography hatte es seinerzeit als das „best ever“ gefeiert.

Noch eine kurze Anmerkung zu den drastisch geringeren Ecken-Auflösungen bei Offenblende der Objektive aus den 20er bis 60er Jahren – verglichen mit ihrer hohen zentralen Auflösung. Ecken-Auflösungswerte von 500 – 600 Linienpaaren pro Bildhöhe bedeuten ca. 40-45 Linien/mm in der uns früher geläufigen Zählweise. Wenn man sich Testergebnisse aus den 60er und 70er Jahren ansieht (Modern Photography), so werden dort bei Offenblende Werte von 45 Linien/mm am Rand als „Excellent“ bewertet, selbst im Zentrum erreicht kaum ein Objektiv mehr als 80 Linien/mm. „Minimum-Standards“ (=“Acceptable“) lagen in den Ecken bei 20 – 36 Linien/mm. Nach meiner Auffassung war auf Analog-Filmemulsion die nutzbare Auflösungsgrenze bei ca. 1.200 LP/BH (35mm-Film) – und das entspricht genau 100 L/mm.

Das heißt, auch: die alten Optiken, deren Auflösungswerte bei Offenblende am Rand hier sehr schwach aussehen (Ernostar, Angénieux, Contarex Sonnar), sind damit in der Praxis normaler Bild-Fotografie schon sehr gut.

Anhang:

Angén90f2,5_f2,5_VglN
Angenieux 90mm f2,5 bei f2,5: Kantenprofil, MTF-Kurve und Auflösung

Angén90f2,5_f11_VglN

Ernostar100f2_2,8_Vgl
Ernostar 100mm f2,0 bei f2,8: Kantenprofil, MTF-Kurve und Auflösung
Ernostar100f2_11_Vgl
Ernostar 100mm f2,0 bei f11: Kantenprofil, MTF-Kurve und Auflösung
CtrxSonnar85f2,0_f2,0_Vgl
Contarex Sonnar 85mm f2,0 bei f2,0: Kantenprofil, MTF-Kurve und Auflösung
CtrxSonnar85f2,0_f11_Vgl
Contarex Sonnar 85mm f2,0 bei f11: Kantenprofil, MTF-Kurve und Auflösung
VivitarSeries1-90f2,5_f2,5_Vgl
VivitarSerie1 90mm f2,0 bei f2,5: Kantenprofil, MTF-Kurve und Auflösung
VivitarSeries1-90f2,5_f8,0_Vgl Kopie.png
VivitarSerie1 90mm f2,5 bei f8: Kantenprofil, MTF-Kurve und Auflösung
Apo-SummicronM_90f2_f2,0_Vgl
Apo-SummicronM ASPH 90mm f2,0 bei f2,0: Kantenprofil, MTF-Kurve und Auflösung
Apo-SummicronM_90f2_f5,6_Vgl
Apo-SummicronM ASPH 90mm f2,0 bei f5,6: Kantenprofil, MTF-Kurve und Auflösung
SonyGM85f1,4-MF_f1,4_Vgl
Sony GM 85mm f1,4 bei f1,4: Kantenprofil, MTF-Kurve und Auflösung
SonyGM85f1,4-MF_f4,0_Vgl
Sony GM 85mm f1,4 bei f4,0: Kantenprofil, MTF-Kurve und Auflösung

Die kürzeste Geschichte der Spiegelreflex-Kamera (SLR)

Diese Zusammenstellung von Daten und Fakten wird sich auf die wesenlichen Innovations-Schritte bei „einäugigen“ KLEINBILD-Spiegelreflex-Kameras (Single-Lens-Reflex SLR for 35mm Film) beschränken und zeitlich meist bis zum Beginn des Autofokus-Zeitalters (1990/92) reichen. Die Anfänge der Mittelformat-SLR werden erwähnt werden.

Die Chronologie ist so geordnet, dass jede besprochene Modellreihe (unabhängig vom Hersteller) zeitlich in der Reihenfolge erscheint, in der die erste Kamera der Baureihe erschien. Die Folgemodelle erscheinen dann danach in demselben Kapitel auch wenn sich die Weiterentwicklung über Jahrzehnte hinzieht.

Die Kapitel sind jetzt nicht nummeriert: Ich bereite ein Inhaltsverzeichnis vor, von dem aus man per Stichwort in das Kapitel springen soll – hoffe, dass das bald funktionieren wird. Die Kapitelüberschriften sind blau und unterstrichen formatiert.

Die (wenigen) Bilder zeigen ausschließlich meine eigenen Oldtimer – ich wollte mich nicht mit vielen fremden Bildrechten herumschlagen. Außerdem hätten zu viele Bilder der Übersichtlichkeit eher geschadet. Die meisten Daten und Fakten sind sorgfältig überprüft – wenn Sie meinen, einen Fehler zu entdecken, benutzen Sie bitte die Kommentar-Funktion.

Kameras mit „Handelsmarken“ wie Hanimex, Porst, Revue etc. werde ich hier nicht behandeln. Sie stammen ursprünglich von einigen der hier behandelten Herstellern, besonders aus Dresden, Russland oder Japan.

Historisch interessierte Menschen leben mit dem Internet heute in paradiesischen Zeiten: über fast jeden auch noch so kleinen Schritt in der technischen Entwicklung hat irgend ein Spezialist in einer Web-Site Kunde abgelegt. Für die an Fotogeräten interessierten kommt der glückliche Umstand hinzu, dass seit 2009 etwa nach und nach noch einige sehr kundige Experten der ehemaligen DDR-Optik-und-Foto-Industrie vieles dokumentiert haben. Ohne diese Kenntnisse wäre jede Geschichte der Spiegelreflex-Technik sehr unvollständig, da ja die Ur-Wiege der Spiegelreflex-Kamera in Dresden und Umgebung lag.

Wandert man heute durch das Internet, so kann man sich viele Details und Zusammenhänge auch noch in verschiedenen Quellen zusammen suchen und damit ein einigermaßen vollständiges Bild machen. Es ist dann auch ratsam, mehrere Quellen zu befragen, da Fehlinformationen, Fehlurteile und Legenden oft ein zähes Leben haben…

Ich persönlich bin ja auch ein Zeitzeuge dieser technischen Entwicklung als Nutzer der Foto-Geräte seit kurz nach dem 2. Weltkrieg – aber gerade zu dieser Zeit lagen viele Vorgänge im dieser Industrie im Osten Deutschlands für uns im Halbdunkel hinter dem eisernen Vorhang. Es waren mehr Gerüchte und Legenden im Umlauf als Tatsachenwissen. Auch waren die DDR-Offiziellen nicht daran interessiert, dass wir hinter die Kulissen blicken konnten. Wir wussten mehr über die japanische Kamera-Industrie als über die in der DDR, auch wenn wir deren Produkte kauften und nutzten.

Auch im Internet kostet diese Art Recherche immer noch eine Menge Zeit. Ich selbst musste mir ein verlässliches historisches Grundraster in Verbindung mit meiner Beschäftigung mit historischer Foto-Optik verschaffen und schreibe nun das Ergebnis hier in sehr geraffter Form – nach besten Wissensstand von 2019 auf. So kann ich es auch selbst immer wieder nachlesen, wenn eines Tages mal der Gedächtnis-Lochfraß einsetzen würde (bzw. unweigerlich wird…).

Der 2. Weltkrieg und die Foto-Optik-Industrie:

Wie sehr viele grundlegende optisch-fotografische Entwicklungen, die noch heute für uns Bedeutung haben, liegt auch das Erscheinen der Spiegelreflex-Kamera (angelsächsisch SLR = Single Lens Reflex) sehr kurz vor dem 2. Weltkrieg. Nur wenige Jahre später wurde der Krieg vom Zaun gebrochen – was zur Folge hatte, dass die zivile optische Forschung und Fertigung weltweit bald völlig zum Erliegen kam, und in den zerstörten, Not leidenden Ländern (ja, auch in Japan lag die Zivil-Wirtschft nach dem Krieg völlig am Boden!) in den ersten Nachkriegsjahren erst einmal wieder aufgebaut werden musste. Dadurch entstand eine Lücke von 1939 – 1949 in der zivilen Foto-Optik und Kamera-Technik. Es gab nur wenige Ausnahmen. Bolsky entwickelte ab 1939 die ALPA SLR-Kamera in der Schweiz und brachte sie noch 1944 auf den Markt. Heinz Kilfit, der Erfinder der Robot-Kamera, wich nach Vaduz aus wo er dann seine legendären Optiken entwickelte. Und Pierre Angénieux, zog sich nach nach Südfrankreich in die unbesetzte Zone azurück und bereitete während des Krieges seinen ganz großen optischen Coup vor.

Genauer gesagt: hier resummiere ich nur die Entwicklung der

EINÄUGIGEN Kleinbild-Spiegelreflex-Kamera.

Unter den Gesamtbegriff SLR würden selbstverständlich auch die Hasselblad, Praktisix/Pentacon Six, Pentax 67  und Co. auch fallen. Sie erscheinen nach dem 2. Weltkrieg auf der Bildfläche und ich werde den Anfang kurz einordnen.

Die Kleinbildkamera, basierend auf dem 35mm-Kinofilm-Format, musste voran gehen, um den Boden zu bereiten – Oskar Barnacks Leica erschien 1925 auf der Bühne, ein Schritt, der durch den 1. Weltkrieg und die nachfolgenden staatlichen und wirtschaftlichen Turbulenzen verzögert worden war. Der Reportage-Photo-Journalismus, für den sich die KB-Kamera sehr schnell als ideal erwies, war da schon vorher von Dr. Erich Salomon mit der Ermanox-Plattenkamera erfunden worden (4,5x6cm – 6x9cm !). Auch nach der Leica dauerte es noch über zehn Jahre, bis eine Spiegelreflex-Kamera in Serie gefertigt wurde, sie kam in Barnack’s Sterbejahr heraus:

1933/36 – Kine-Exakta, Hersteller IHAGEE-Kamerawerk, Dresden; Konstrukteur: Karl Nüchterlein (1904-1945 als Soldat vermisst)

Die Ur-Exakta hatte einen fest eingebauten Lichtschacht.

Nach dem Weltkrieg wurd die Fertigung in Dresden ab 1948/49 mit einer verbesserten Ekakta II wieder aufgenommen – mit unverändertem Exakta-Bajonett, ab 1950 erhielt die Kamera dann endgültig als Exakta Varex (VX) das Sucher-Wechselsystem, an dessen Konstruktion bereits Nüchterlein vor seiner Einberufung als Soldat gearbeitet haben soll. Ich selbst war ab 1967 ein sehr glücklicher Exakta Varex IIb-Besitzer/Nutzer. Die hatte ab 1967 auch einen Rückschwing-Spiegel. Aus Dresden gab es dann schon die Exakta Varex 1000, mit der die Exakta-Geschichte schließlich 1970 endete.

EXAKTA-IIb_900

Danach gab es tatsächlich bis 1973 noch eine EXAKTA RTL 1000, die eine Practica L mit Exakta-Bajonett und Wechselsucher ist, für die es einen TTL-Prismenaufsatz nach Nikon-Art gab.

Insgesamt wurden ab 1949 bis 1973 unter dem Namen Exakta/Elbaflex ca. 564.000 Kameras gebaut (Quelle: www.dresner-kameras.de).

Die Varex hatte eine Film-Schneidevorrichtung im Gehäuse, mit der man teilbelichtete Filme abtrennen konnte, die man dann aber in der Dunkelkammer (oder im sog. lichtdichten „Wechselsack“) herausnehmen musste.

1937 – „Sport“/“Cvopm“anfangs auch „Gelveta“, Hersteller  GOMZ, Leningrad, UdSSR; Konstrukteur: A.O. Gelgar.

Einige Zeit war es wohl umstritten, ob die Gelveta/Sport nicht doch die erste Spiegelreflex-Kamera war. Mitlerweile ist diese Datierung wohl sicher.

Einschub: Das SLR-Mittelformat

ca. 1936 – entsteht im Sächsischen „Kamera-Valley“ kurz nach der Kine-Exakta auch die Mittelformat-SLR,

zunächst generell im Format 6×6 (56mm x 56mm). 1939 gibt es bereits die Beier-Flex, die Exakta 6×6, die Primarflex und die Reflex-Korelle. Aus letzterer entstand nach dem Krieg für kurze Zeit ab 1947 die Meister-Korelle, die quasi der Vorläufer der Praktisix (1954) ist (Neukonstruktion unter Siegfried Böhm) und auch als Pentacon Six und Exakta 66 extrem erfolgreich war.

Victor Hasselblad stellt im Jahr 1948 seine Kamera mit Schlitzverschluss vor (Hasselblad 1600F/1000F). Bald geht er zum Zentralverschluss im Objektiv über: die legendäre Hasselblad 500 – Baureihe. Später folgen die Hasselblad 2000er und 200er Serien.Die Kameras haben rückseitig Film-Wechselkassetten.

Später folgen viele andere Hersteller mit SLR für die Formate 6×6, 6×4,5 und 6×7:

Pentax 67 und 645, Contax 645, Mamiya 67, Bronica etc.

Das Mittelformat ist nicht das Thema dieser Zusammenstellung.

1938/39 – Praktiflex – Hersteller: ab 1938 Kamera-Werkstätten Guthe & Thorsch, Niedersedlitz; Konstrukteure: Benno Thorsch und Charles A.Noble (?) – 1938 Arisierung: ab dann Kamerawerkstätten Charles A. Noble – ab 1948 VEB Kamerawerke Niedersedlitz (KW-Logo).

Erste Kleinbild-SLR mit Rückschwingspiegel. Objektivanschluss: M40-Gewinde. Wiederaufnahme 1947 (M42 Gewinde – ab 1948/49) – wurde 1951 zugunsten der Praktica eingestellt.

1944 – Alpa-Reflex (Modell C) Hersteller: Pignons S.A., Ballaigues, Schweiz; Konstrukteur : Jacques Bolsky/Bolsey/Jacov Bogopolsky (1895-1962) – später Erfinder der Bolex-Filmkameras in USA. 1964 mit der Alpa 9d eine der aller-ersten SLR mit TTL-Belichtungsmessung (CdS-Zelle hinter dem Spiegel mit Schlitzen). Ab der unten abgebildeten Alpa 10d mit fest eingebautem Prisma (4. Generation). Einige Modelle wurden auch für Halbformat ausgerüstet geliefert (z.B. die 10 s).

(Entwickelt ab 1939) – ab 1949 mit Pentaprisma (Alpa-Prisma-Reflex) – Prisma zunächst wechselbar. KB-SLR mit kürzestem Auflagemaß aller Kleinbild SLR! (37,8mm – gegenüber durchschnittlich 45 mm bei den meisten anderen Kleinbild-SLRs). Entwicklung und Produktion eingestellt 1990. Es sollen in diesen 45 Jahren gut 50.000 Alpa-SLR-Kameras gebaut worden sein (das ist Manufaktur! – Spitzenjahr soll 1965 mit 1.300 Kameras gewesen sein…).

Alpa10d+90f2,5_900
Alpa 10d mit Angénieux 90mm f2.5 (1968-1974)

Hinweis: Immer wieder sehe ich, dass Anbieter auf Ebay ihre Exakta-Objektive mit dem Zusatz anbieten, sie seien auch für Alpa verwendbar. Ich denke mir, dass das durch das Erscheinungsbild mit dem Ausleger für die Springblende verursacht wird (über den der frontseitige Auslöser betätigt wird) – ähnlich wie bei der Exakta. Die Objektiv-Anschlüsse könnten allerdings nicht verschiedener sein: 1. das Bajonett hat eine völlig unterschiedliche Geometrie, 2. Das Auflagemass ist bei Alpa 37,8mm, bei Exakta 44,5mm, 3. der Springblenden-„Ausleger“ befindet sich auf der entgegengesetzten Seite!

1948 – Rectaflex – Hersteller: Rectaflex, Rom, Italien  ; Konstrukteur: Marco Antonetto/Telemaco Corsi.

Erste SLR mit Pentaprisma (fest verbaut). Großes Objektiv-Bajonett. Einzige je in Italien gebaute SLR. Wurde 1958 eingestellt (nach einem Intermezzo in Liechtenstein nach 1956, woraus wohl nie eine Kamera verkauft werden konnte…). Es sollen ca. 7.000 Exemplare gebaut worden sein.

1948 Praktica – Hersteller: Kamerawerke Niedersedlitz (1948-1960; ab 1960: Pentacon, Dresden). Ab 1959 mit fest eingebautem Pentaprisma. Pentacon baute bis 1990 Praktica-SLR-Kameras. Ab 1948 mit M42x1 Objektiv-Gewinde.

PentaconSuper_900

1968 wurde noch einmal der Versuch gemacht, eine Profi-SLR auf den Markt zu bringen: das Ergebnis war die ungewöhnlich massive Pentacon Super (1968-1972, ca. 4.500 Kameras gebaut), Konstrukteur war Horst Strehle. In der Geschichte dieses Modells wird das Problem der DDR-Wirtschaft exemplarisch sichtbar (und das sollte weiter anhalten!): die Patente für Verschluß und TTL-System stammten von 1961/62 – die Kamera konnte aber erst 1968 ausgeliefert werden – da hatten die potentiellen Kunden sich weitgehend verlaufen (zur Konkurrenz in Japan) und die Kamera war praktisch schon wieder veraltet.

Sie hatte ein Wechselsuchersystem, aber nur mit dem TTL-Prisma ein gekuppeltes TTL-Belichtungsmeßsystem. Objektivanschluß M42 Gewinde. In Verbindung mit dieser Kamera kam auch das Pancolar 55mm f1.4 heraus, bei dem (einmalig) der Schritt zu den leicht radioaktiven Thorium Gläsern gemacht wurd, weshalb diese Optiken heute im allgemeinen gelblich verfärbt und damit eingedunkelt sind – es sei denn, man hätte sie zwischendurch mittelkurzer UV-Strahlung oder dem direkten Sonnenlich längere Zeit ausgesetzt.

Ab 1978/79 wurden die Kameras mit  PB-Bajonett ausgestattet. Es sollen insgesamt ca. 9 Millionen Praktica/Pentacon-Kameras in vier Generationen hergestellt worden sein! 1991 kam das Ende des Unternehmens Pentacon.

1949 – Duflex – Hersteller: Gamma Werke/MOM-Kamerawerke, Ungarn; Konstrukteur: Jenó Dulovits (Ungarn, 1903-1972). Allererste Kamera mit fest eingebautem, seitenrichtigem Suchereinblick mittels Porrospiegelsucher, Rückschwingspiegel und Metallschlitzverschluss und Automatik-Blende – Format 24×32 mm. Die Kamera hatte zusätzlich noch einen normalen Sucher mit eingespiegelten Brennweiten-Rahmen.

Die Kamera kam nach fast 10 Jahren Vorarbeiten, Patentierung, Marktforschung und Prototypenbau (ab 1944) auf den Markt (1949) – wurde aber in nur 600 Exemplaren bis 1950 gebaut. Der Grund für das plötzliche Ende ist nicht offiziell bekannt. Der Autor Ian Platt hatte wohl im Jahr 2005 die Gelegenheit, in Budapest selbst der Sache auf den Grund zu gehen – aber auch er konnte nur die (wahrscheinlich zutreffende) Vermutung erarbeiten, dass von den kommunistischen Parteien (UdSSR und Ungarn) bei der Organisation der Nachkriegswirtschaft der neu entstandenen Kameraindustrie in der DDR (Dresden) und in der UdSSR der Vorzug gegeben wurde (Export brachte Devisen!) und die ungarische Firma zur Einstellung der Fertigung geszwungen wurde – eine Kamera, die den anderen 10 Jahre voraus war, wurde „eingestampft“ – das Know-How aber auch nicht intelligent transferiert und genutzt (vmtl. „not-invented-here-Effekt“…), was die Ineffizienz der staatlich gelenkten Wirtschaft wieder einmal beleuchtet.

1949 – Contax S – Hersteller: VEB Zeiss Ikon, Dresden; Konstrukteure: Wilhelm Winzenburg und Walter Hennig. Ab 1958 unter Pentacon F.

Mit fest eingebautem Pentaprisma. Sie wurde lange Zeit für die erste SLR mit seitenrichtigem Suchereinblick (Pentaprisma) gehalten – bis die Informationen über die italienische „Rectaflex“ (s.o.) abgesichert wurden. M42-Objektivanschluss. Konstruktions-Vorarbeiten fanden schon von 1938 – 1941 statt (man fing an, die IHAGEE-Produkte Ernst zu nehmen….). Nach dem Krieg aber war völlige Neukonstruktion erforderlich.

1952 – Praktina Hersteller: „KW“ Kamerawerke Niedersedlitz, DDR ; Konstrukteur (verantwortl.) Siegfried Böhm (später auch Konstr. der Praktisix!).

Wechselsuchersystem und sehr großes Objektiv-Bajonett! Die Kamera war so ausgelegt, dass um sie herum ein vollständiges, professionelles System gebaut werden konnte – und auch wurde! Ab 1958 auch unter dem Dach der VEB Kamera- und Kinowerke Dresden (Pentacon) wurde die Praktina  zugunsten der einfacheren und billiger  herzustellenden Praktica-Baureihe 1961 eingestellt.

1952 – Zenit – Hersteller: Krasnogorsky Zavod (KMZ), UdSSR. Zenit-SLR haben meist fest eingebautes Prisma. Die erste Kamera wurde aus der Zorki (M39-Sucherkamera) abgeleitet. Es sollen von 1961 – 1981 über 8 Millionen SLR-Kameras der Zenit-Baureihe geliefert worden sein – z.T. als OEM-Produkte (REVUE etc.). Noch heute werden analoge Zenit-SLR-Kameras gebaut.

1951/53 – Mecaflex – Hersteller: Metz, Fürth (1953-58), Kilfitt, Monaco (1958-1965); Konstrukteur: Heinz Kilfitt.

Fest eingebauter Lichtschachtsucher und spezieller Objektiv-Bajonett-Anschluss (ähnl. Canon FD).

1953 – Contaflex – Hersteller Zeiss Ikon, Stuttgart; SLR mit fest eingebautem Prisma und Zentralverschluss im fest eingebauten Objektiv – ab Contaflex III vorderer Objektivteil wechselbar (Pro-Tessare)!

Contaflex-II_900

Anfangs (Contaflex I + II) mit Tessar 45mm f2.8. Ab 1956 waren die Objektiv-Vorderteile des neuen Tessar 50mm f2.8 wechselbar (Pro-Tessare). Ab 1958 mit Schnellspannhebel – aber bis zum Ende der Baureihe 1971 ohne Rückschwingspiegel, trotz einer sehr großen Zahl von Modellen! Je nach Modell, gab es ab 1959 oder 1962 einen gekuppelten Belichtungsmesser (Selen) und ab 1962 eine Blendenautomatik (und Zeiss spendierte ein verbessertes Tessar). Seitdem gab es auch Wechsel-Filmkassetten zur Contaflex.

1957 – Retina Reflex – Hersteller: Kodak-Kamerawerk in Stuttgart, BRD, das Kodak 1931 von Dr. Nagel erworben hatte und das seit 1934 Retina Kleinbildkameras baute, nachdem Kodak im selben Jahr den KB-Film in der 135er-Patrone eingeführt hatte. Kodak USA wurde 1882 zur Herstellung von Rollfilmen gegründet und baute ab 1888 Kameras.

Retina Reflex war eine SLR mit fest eingebautem Prisma, Objektiv-Wechselbajonett (Wechsel des gesamten Objektivs!) und Zentralverschluß (Synchro Compur). Vier Modelle – letztes Retina Reflex IV ab 1964 bis 1969. Sehr hochwertig, aber kompliziert und schwer.

Ab 1991 bot Kodak als erster Hersteller eine autonome D-SLR-Kamera an (DCS 100) basierend auf Canon- später Nikon-Serienmodellen. Ein besonderes Highlight war ab 2002 die DCS Pro 14n (14 MP) mit Nikon-Bajonett.

2012 ging die Firma Kodak in USA in Insolvenz – aus Teilbereichen wurden Nachfolgefirmen gegründet – auch der Markenname hat überlebt.

1958 – Zunow – Hersteller: Zunow Optical Industry Co. Ltd, Japan  ; Gründer der Firma 1930 – als Teikoku Kogaku Kenkyujo: Suzuki Sakuta.

Ambitionierte SLR mit Wechsel-Pentaprisma und Schlitzverschluss, Automatik-Blende, Rückschwingspiegel und Objektiv-Bajonett. Wahrscheinlich neben der Duflex die am kürzesten gebaute SLR der Kamerageschichte. Extrem wenige Kameras wurden gebaut (Fertigungs-Rate: 8 pro Tag!). Die meisten SLR-Kameras sollen unzuverlässig und sehr reparaturanfällig gewesen sein (lt. L. Paracampo)!

Schon 1960 wurde die Firma, die große Optik-Kunden im Cine-Bereich hatte (Neoca und Arco), durch Kunden-Konkurse in die Insolvenz gerissen und wurde am 1.1.1961 geschlossen.

Die Firma war und ist berühmt durch die frühen, extrem lichtstarken Optiken wie das Zunow 50mm f1.1 (Designer: Hamano Michisaburo) – das zuerst für RF-Kameras wie Leica, Contax, Nikon geliefert wurde. Prototypen ab 1950, ausgeliefert wurde das Objektiv ab 1953.

Die Zunow-SLR wurde auch mit einem 50mm f1.1 als Normalobjektiv ausgeliefert. Weitere Lichtstarke Optiken der Firma waren: 35mm f1.5, 35mm f1.7, 100mm f2.0. Ein 75mm f1.0 wurde wohl konstruiert – aber nicht gefertigt…

Die erste Normaloptik 50mm f1.8 für die erste Miranda-SLR-Kamera (Orion) kam von Zunow.

1958 – Start – Hersteller: KMZ, Krasnogorsk, UdSSR; Hergestellt bis 1964.

Merkmale ähnlich Exakta, wechselbarer Sucher, Tuchschlitzverschluss aber Objektiv-Bajonett ähnlich (nicht gleich) Praktina. Film-Schneide-Vorrichtung im Gehäuse.

1958 – Bessamatic – Hersteller: Voigtländer; eine SLR mit Zentralverschluss-Wechselobjektiven und gekuppeltem Belichtungsmesser (manuelle Nachführung) und bereits mit Schnellspannhebel – Objektiv-Anschluß mit Deckel-Bajonett (DKL) leicht modif. zum Retina-Bajonett. Bis zum Ende der Baureihe kein Rückschwingspiegel!

1961 als Spitzenmodell die Ultramatic cs mit Belichtungsautomatik mittels TTL-CdS-Zellen – mit siebenlinsigem „Septon 50mm f2.0“ – eingestellt 1965 (es wird berichtet, dass der Spiegel-Rückschwingmechanismus vorgesehen war – aber nicht zuverlässig funktionierte – und dann  einfach weggelassen wurde…)

1962 daneben Bessamatic deLuxe (eingespiegelte Zeiten und Blenden), Bessamatic m ab 1964 (rein mechanisch), ab 1966 Bessamatic cs: TTL-Belichtungsmessung mit CdS-Zelle. Ende der Baureihe 1969.

1959 – Contarex – Hersteller Zeiss Ikon, Stuttgart, BRD;

Professionelle SLR. Es gibt fünf Modelle:

1959 – 1966 – Contarex („Contarex I“/“Bull’s Eye“/“Cyclops“) mit fest eingebautem Prisma und gekuppeltem Selen-Belichtungsmesser. Es gab sofort 10 Wechselobjektive – später bis zu 18 Brennweiten und profess. Zubehör, Motorantrieb und Wechselkassetten.

1960 – 1963 Contarex Spezial mit Wechselsuchersystem.

1966 – 1967 – Contarex Professional: neues Gehäuse mit fest eingebautem Prisma und Flash-Matic, rein mechanisch – ohne Belichtungsmessung.

ab 1967 – Contarex S – mit TTL-Belichtungsmessung (CdS-Zelle).

1968 – 1972 – Contarex SE – elektronischer Verschluss – soll die erste Kamera gewesen sein, bei der die Verschlußzeit stufenlos elektronisch gebildet wurde.

1966 – Icarex 35 – Hersteller Zeiss Ikon oder Voigtländer, Deutschland. SLR mit (erstes Modell) Wechselsucher – später festem Prisma, Schlitzverschluss und wieder einem anderen Bajonett-Anschluss für das Objektiv. 3 Modelle (35, 35S, 35CS) – plus drei weitere, identische mit dem Zusatz „TM„: Zeiss Ikon baut tatsächlich in einige seiner letzten SLRs ein M42-Gewinde ein! Dabei ist beim Erscheinen der Kamera selbst das Modell mit TTL-Belichtungsmessung (Icarex 35s, ab 1969 ) der Asahi Pentax gegenüber 5 Jahre im Rückstand.

Zwei weitere SLR-Modelle von Zeiss Ikon gehören eigentlich zur Icarex-Baureihe – werden aber unter anderem Namen vermarktet:

Contaflex 126“ (1966, Instamatic-Film + TTL-Offenblendenmessung gekuppelt!) und als letztes Modell

SL706“ (M42 und TTL-Offenblendenmessung) – es kam im Jahr 1972 heraus, wenige Monate, vor dem Ende:

1972  stellte Zeiss Ikon die gesamte Kleinbild-SLR-Sparte wegen wirtschaftlicher Erfolgslosigkeit ein! Da man das Geschäft mit den SLR-Objektiven nicht verlieren wollte, schloss man 1972 einen Kooperationsvertrag mit Yashica ab (nachdem Pentax abgesagt hatte). Yashica wurde 1983 von Kyocera übernommen. Als Ergebnis der Kooperation entstand die Contax RTS – siehe weiter unten ab 1974.

1974 – Contax RTS – Hersteller Yashica, ab 1983 Kyocera; Design F.A.Porsche. Kamerabajonett C/Y. Original-Objektive hierzu kamen von Carl Zeiss (BRD). SLR mit fest eingebautem Pentaprisma, und elektronisch kontrolliertem Metall-Schlitzverschluß, z.T. mit eingebautem Motor.

–> Kameraseitig ist dies EIGENTLICH ein Kapitel der japanischen Foto-Industrie!

Eine professionelle Systemkamera-Produkreihe entstand: Contax RTS, RTS II (1982), RTS III (1991) – diese letztere war aus meiner Sicht der absolute Höhepunkt der mechanischen Kamera-Baukunst (Verschlusszeit 1/8000 s): vor jeder Aufnahme wurde der Film mit Vakuum an die keramische Filmandruckplatte gezogen, damit sie absolut eben ist! (… wer das Verschluss- und Spiegelschlag- und Motorantriebs-Geräusch diesser Kamera hört, wird mir vielleicht Recht geben!). Dazwischen lagen weitere, etwas preiswertere, Modelle wie Contax 137MA, 159 MM, 167 MT. Gegen Ende der Ära die Contax RX, RX II – und die AX, mit Autofocus-Funktion durch Verschieben der Filmbahn, wodurch die non-AF-Objektive mit Autofocus nutzbar wurden, wenn auch recht langsam… Auch fast am Ende die wunderschöne, kleine Contax Aria – im 60. Contax-Jubiläumsjahr zusammen mit dem neu gerechneten Tessar 45mm f2.8!

ContaxRTSIII_2_900

Die Zeiss-Objektive der Contax-RTS-Baureihe mit c/y-Bajonett sind Legende – zu Recht!

Kyocera stellte die Herstellung der SLR-Baureihen 2005 ein (Digital-Dämmerung?). Den Autofocus hatte man 2000 noch mit der Contx-N Baureihe eingeführt – 15 Jahre nach der ersten Minolta mit Autofokus… Die Preise für Contax-SLR lagen im oberen Profi-Segment – für manuell zu fokussierende Kameras. Da war der Zug in das Profi-Lager der Zukunft längst abgefahren als Zeiss/Kyocera mit Contax versuchten, da einzusteigen.

Es gab auch 2002 eine erste D-SLR „Contax N Digital“ – dies war die erste Vollformat D-SLR der Welt! Dieser Bolide (6 MP) hatte viele Probleme – wegen der vielen technischen Zicken nannten wir sie „die Diva“. Aber wenn alles gut ging hatte man großartige, rauscharme Ergebnisse, dank fabelhafter Zeiss-Objektive und Vollformat!

1960 – Focaflex – Hersteller OPL, gegründet 1919 in Lavallois, Frankreich (Kamerabau seit 1945 bis 1967) – fusionierte Später mit SOM. Die Kamera benutzt ein Spiegelsystem für den seitenrichtigen festeingebauten Sucher (ähnlich Olympus PenF ab 1963). Drei aufeinander folgende Modelle: Focaflex, Focaflex Automatique und Focaflex II. Einstellung der Herstellung 1967.

Meines Wissens ist dies die einzige SLR, die in Frankreich gebaut wurde – Details kenne ich nicht.

1964 – Leicaflex – Hersteller: Ernst Leitz Wetzlar, BRD; der Hersteller der klassischen Leica-Messucher-Kamera sah sich genötigt, dem Siegeszug der SLR weltweit technisch etwas entgegenzusetzen. Bei der Einführung fehlten der Leicaflex dann aber weitgehend alle innovativen Features der japanischen Konkurrenz – hauptsächlich die TTL-Belichtungsmessung. Die Zahl der passenden SLR-Objektiv-Brennweiten war sehr gering. Für ein Zoom griff man auf ein von Angénieux entwickeltes Modell zurück (45-90mm f2.8). Die (Offenblenden-Messung) wurde mit dem Modell Leicaflex SL 1968 eingeführt. 1974 gab es noch einmal eine geringfügige Auffrischung mit der Leicaflex SL2. 1976 wude die Modellreihe eingestellt und durch die inzwischen in Kooperation mit Minolta entwickelte Leica R-Baureihe ersetzt. Leitz hatte offensichtlich nicht die Kraft dies aus eigenen Resourcen zu tun.

Um die Fertigungskosten der Kameras zu senken, errichtete die Ernst Leitz Wetzlar bis 1973 ein neues Werk in Portugal.

1967/68 – Regula Reflex 2000 CTL – Hersteller: King&Bauser, Bad Liebenzell, Deutschland – Konstrukteur: Joseph Op de Beek. Mechanische SLR (1/2000 s) mit TTL-Belichtungsmessung. 1966 auf der Photokina vorgestellt – mit NikonF und M42-Anschluss. Letztlich wohl meistens mit M42 gebaut. Es gab 3 weitere Modelle. SLR-Fertigung bis ca. 1975geschätzt 4.500 Kameras.

Firma King wurde 1936 gegründet und zog 1938 nach Bad Liebenzell. Ab 1949 wurden Kameras produziert (bis 1984 sollen es lt. Wikipedia ca. 5 Millionen Kameras gewesen sein!). Ab 1960 wurden Blitzgeräte gebaut, die sehr bekannt und geschätzt waren. 1984 ging Regula-Werk King & Bauser in Konkurs. (Andeutungen auf Wikipedia lassen darauf schließen, dass hohe Investitionen in das – sorry: dämliche! – Photo-Disc-System von Kodak (Filmformat 8mm x 10,5 mm!!!) mit einer sehr unglücklichen Lizenz-Strategie seitens Kodak sich als Fehlinvestition erwiesen und mit Schuld an dem Konkurs hatten!)

1976 – Leica R3 – Hersteller: Ernst Leitz Wetzlar, BRD (ab 1986: Leica Camera AG) – jene in Zusammenarbeit mit Minolta entwickelte SLR mit fest eingebautem Prisma und elektronisch gesteuertem Metallamellen-Verschluß. Also endlich eine moderne SLR von Leitz Auch das nächste Modell Leica R4/R4s (ab 1980/83) wurde noch in Zusammenarbeit mit Minolta geschaffen. Außerdem übernahm Leitz mehrere Minolta Objektiv-Designs: 24mm f2.8, Fisheye 16mm f2.8, 35-70mm f3.5 und 70-210mm f4. Die Modelle Leica R5/R-E (ab 1986/90) bekamen zusätzlich TTL-Blitzsteuerung (die die Olympus OM-2 bereits seit 1975 besaß…). Fast 15 Jahre lang war die Leica R jetzt rein äußerlich fast unverändert – und in mancher Hinsicht technisch der japanischen Konkurrenz leider ca. 10 Jahre hinterher…

Leica R6/R7 wurden ab 1988/92 in einem völlig neuen Gehäuse gebaut, wobei die R6/R6.2 eine rein mechanische Kameras waren, die auch ohne Batterie funktionierten (Batterie diente nur zur Belichtungsmessung – wie bei Olympus OM-3Ti.). Die Kamera wurde gegenüber der R5 modernisiert und bekam Mikroprozessor-Steuerung.

LeicaR8_900

Leica R8 (ab 1992-1997) und R9 (ab 1996) wurden als letzte SLR der Leica R-Baureihe bis 2009 hergestellt. Sie erhielten ein sehr modernes Design – aber waren immer noch MANUELL zu FOKUSSIEREN ! Ab 1996 gab es ein Digital-Rückteil-Modul (10 MP CCD-Sensor mit Brennweiten-Verlängerungs-Faktor von 1,37), das auch an der R8 verwendet werden konnte. Damit endete die Ära der SLR bei Leica Camera AG.

Die ab 2015 gelieferte Leica SL (Vollformat 24×36) ist eine spiegellose Digital-Systemkamera mit Adapter für die R-Objektive – nun MIT Autofokus…

Die Leica-R-Objektive haben – zu Recht! – einen Ruf wie Donnerhall – viele sind legendär geworden! Ich selbst schätzte am meisten die Summicron-Baureihe und die Apo-Elmarit- (Makro!) und Apo-Telyt-Optiken.

1970 – Rolleiflex SL 35 – Hersteller: Rollei, Singapur. Konstruktion bei Rollei in Braunschweig. Aber produktionsseitig ist dies eigentlich bereits ein Kapitel der asiatischen Fotoindustrie… SLR mit fest eingebautem Pentaprisma, Rollei QMB-Bajonett und Zeiss-Originalobjektiven.

Ein kurzes Intermezzo mit vier Modellen (35, 35ME, 35E SL350) bis 1983. Zum Schluss legte Rollei mit der SL2000 (1981-84) noch einmal ein SLR-Highlight im Stil der würfelförmigen 6×6-Mittelformat-SLRs auf: mit fest verbautem Lichtschacht und Prisma, Motor und Wechsel-Filmkasetten!

Und wo bleibt die japanische Foto-Industrie?

Man muss wissen, dass die japanische Industrie nach dem verlorenen 2.Weltkrieg wahrscheinlich noch wesentlich stärker am Boden lag als die deutsche. Deshalb ist es kein Wunder, dass diese Industrie auf diesem Gebiet spät startete, aber dann mit enormen Fleiß, geballter Innovationskraft und einem nationalen Qualitätskonzept (MITI)!

Das Versagen der deutschen Fotoindustrie wurde zunächst gerne damit beschönigt, dass die japanische Industrie die europäische mit „billigen Kopien“ unfair geschädigt habe. Ja, die „billigen Kopien“ der Leica gab es wirklich in Russland und Japan. Aber heute liegen die Fakten detailliert auf dem Tisch und es ist weitgehend Konsens, dass die deutsche Fotoindustrie nicht wegen billiger Leica- oder Contax-Kopien untergegangen ist – es sei denn, man bezeichnet eine technisch und designerisch fortschrittlichere japanische Kamera nur deswegen als „Leica-Kopie“, weil sie einen gekuppelten Entfernungsmesser und ein M39-Anschlußgewinde hat. Frank Mechelhoff hat in seinem Blog „klassik-kameras.de“ einmal sehr überzeugend nachgerechnet, dass eine japanische (Canon) Meßsucherkamera Anfang der 60er Jahre teurer war, als eine deutsche – und technisch fortschrittlicher! Und selbst die Objektiv-Designs waren oft fortschrittlicher!

Ich bin nicht kompetent, den Niedergang der deutschen Fotoindustrie in den 1960/70er Jahren zu beurteilen, aber mein Verdacht ist, dass eine Menge Überheblichkeit und Ignoranz im Spiel war.

Die japanische Industrie erschien mit einigen Jahren Verzögerung nach dem 2. Weltkrieg in der SLR-Technologie auf dem Markt, machte dann aber gleich ab den 1960er Jahren mit Innovationen auf sich aufmerksam. Da war die deutsche-europäische Geschichte der Spiegelreflex-Kamera schon fast zuende erzählt… mit Ausnahme der DDR-Indstrie – … und der Leica R, die noch lange gemütlich hinterher zuckelte.

1952 – Asahiflex I – Hersteller Asahi Optical Co; die 1948 wiedergegründete Optik-Firma, eursprünglich ein Brillenglas- und  Foto-Objektiv-Hersteller. Erste japanische Spiegelreflex-Kamera. 1954 (Asahi IIB) mit Rückschwingspiegel, ab 1957 mit fest eingebautem Pentaprisma. 1957 kauft Asahi von der Dresdener VEB Zeiss Ikon den MarkennamenPentax“ (gebildet aus Pentacon und Contax) – danach heißen die SLR-Kameras Asahi Pentax – später nur noch Pentax. Anfangs mit Objektiv-Gewinde M37 – ab 1957 wird auch das M42x1 Anschlussgewinde aus Dresden übernommen – für EIGENE Takumar-Foto-Objektive. Man erkennt hier welche Vorbild-Rolle zu diesem Zeitpunkt die Dresdener Kameratechnik NOCH hatte. Eine Zeiss-West-Spiegelreflexkamera gab es da noch gar nicht (und bald schon nicht mehr…). Heute heißt die Firma „RICOH“ – aber der Name Pentax ist für die SLR-Kameras geblieben.

1964 landete Asahi Pentax seinen legendären Innovations-Coup mit der TTL-Belichtungsmessung (durch das Objektiv): die Pentax Spotmaticobwohl die früheste Serieneinführung der Belichtungsmessung durch das Objektiv ein Jahr früher durch Topcon erfolgt war (Topcon RE Super) – Asahi war wohl besser in der Vermarktung.

1971 folgte ein erneuter Innovations-Schub durch die TTL-Belichtungsautomatik und die Super-Multi-Coating (SMC) Objektiv-Beschichtungs-Technik. Dieser Schwung reicht zu einer sehr starken Marktstellung bis in die 80er Jahre. Zeiss Ikon (BRD) stellte ein Jahr später die Fertigung aller Kleinbildkameras ein).

1975 führte Pentax schließlich – zu spät – das K-Bajonett für die Objektive ein: der Stern sank nun langsam im Vergleich zu früheren Glanzzeiten. Nur Praktica (Pentacon, DDR) stellte noch später – 1979 – auf ein Bajonett um.

Ab 1987 erfolgte bei Pentax Umstellung auf Autofocus – Mitte der 00er-Jahre auf Digital. 2005 hat Pentax die Herstellung von analogen SLR eingestellt.

1955 – Miranda T – Hersteller: Orion Camera Co., ab 1957 Miranda Camara Co.; gegr. 1946/47 von zwei Luftfahrt-Ingenieuren: Ogihara Akira und Ōtsuka Shintarō (sie sind auch die Konstrukteure).

Erste japanische SLR mit wechselbarem Pentaprisma (öffentl. Prototyp 1953!). Sehr eigenwilliger Objektiv-Anschluss: Gewinde M44 + ein zusätzliches Außenbayonett. Ab 1969 auch Varianten mit M42. Die Objektive wurden zugekauft. 1967 Modell Sensorex mit TTL-Belichtungsmessung. 1971 Sensorex EE mit automatischer Belichtungssteuerung und neuen Wechselsuchern. 1975 folgte als letztes Modell die kompakte dx-3 mit fest eingeb. Prisma und elektronisch gesteuertem Verschluß. Im Laufe der 60er Jahre übernahm nach und nach AIC (Soligor) die Kontrolle über die Firma.

1976 Ende der Firma durch Insolvenz.

1957 – Topcon R – Hersteller: Tokyo Optical Company Nippon (Topcon), Japan; gegründet 1932 als Optische Werkstätten, Kameraherstellung ab 1937. Die erste SLR ist bereits eine Systemkamera mit Wechselsucher und Exakta-Objektiv-Bajonett und Schlitzverschluss. Bereits mit dem Modell Topcon R II wurde 1960 das Bajonett modernisiert und auf interne Blendenübertragung umgestellt, so dass der „Springblenden-Auslöse-Ausleger“ verschwand.

Erstaunlich war die hohe Innovationsrate bei Topcon – oft wurden im Jahresrhythmus neue Features auf den Markt gebracht – oft als weltweite Erst-Innovation – auch bei den Zentralverschluss-Kameras.

Mit dieser ersten Schlitzverschluss-SLR brachte Topcon auch sofort zwei Tele-Boliden herus: 13,5cm f2.0; 30cm f2.8 – das letztere kam damit rund 17 Jahre eher heraus bevor Canon sich traute dies zu machen (das FL-Fluorite von 1974). Das Topcor 30cm f2.8 konnte werbewirksam bei der Olympiade 1964 in Tokio eingesetzt werden! Die optische Qualität dieser Objektive ist ganz erstaunlich! Das 300mmf2.8 wurde bald reihenweise für Nikon-Anschluß umgerüstet. Um die Innovationskraft des Unternehmens einzuschätzen muss man wissen, dass dort bereits 1958 ein Prototyp eines Spiegelteles 1000mm f7 existierte, das aber nicht in Serie ging.

1959 – Topcon PR – mit dieser Baureihe, ähnlich der Zeiss IKON Contaflex III (Spiegelreflex mit Zentralverschluss, festes Prisma und fest eingebautes Objektiv und Wechsel der vorderen Objektiv-Hälften) schob Topcon schon nach 2 Jahren eine SLR-Type nach, der sie parallel bis zum Ende der Kamerafertigung 1981 auch treu bleiben würde: die SLR mit Zentralverschluss im Objektiv (Grundprinzip der Hasselblad 6×6 …) war auch bei Kleinbild-SLR in den 60er und 70er Jahren sehr populär. Auch ich bin mit der Contaflex II meines Vaters „zur SLR sozialisiert worden“!

Im Gegensatz zu Zeiss Ikon, die die Contaflex bis zum Ende (1971) OHNE Rückschwingspiegel baute, führte Topcon schon 1960 in beiden Kamera-Linien den Rückschwingspiegel ein!

Topcon machte aber schon 1963 einen weiteren Schritt: echte Wechselobjektive mit je einem eigenen Zentralverschluss. Die Zentralverschluss-SLR-Reihe wurde auch in kurzen Abständen aktualisiert und weltweit vertrieben: PR, PR II, SR, Wink-Mirror (1960), Wink-Mirror-S, Topcon Uni & Auto 100 bzw RE Auto, Unirex (1965), Unirex EE (1972), IC-1 Auto.

1963 – Topcon RE Super: weltweit erste SLR-Kamera mit TTL-Belichtungsmessung, ein Jahr VOR Pentax auf dem Markt. Ebenfalls Wechselsucher und Exakta-Bajonett – aber erweitert um Blendenfunktionen! Es war ein Paukenschlag – 1963/65 kam hier ein extrem umfangreiches Kamerasystem auf den Markt, mit einem vorher nie gesehenen Ojektiv-Brennweiten-Programm (Brennweiten noch in cm graviert!): 5,8cm f1.4; und weiterhin die beiden Highlights 13,5cm f2.0; 30cm f2.8; sowie die beiden exzelenten Retrofokusobjektive 2,5cm f3.5 und 2,0cm f4.

Die bereits 1957/59 und 1963/65 aufgelegten Objektive sind ALLE von ganz exquisiter optischer Qualität! Auch das Retrofokus-Weitwinkel 2,4cm f3.5 von 1963 ist selbst dem Zeiss-Distagon 25mm f2.8 zur Contarex von 1961 so haushoch überlegen, dass man es kaum fassen kann. Ich werde in Kürze über diese Ausnahme-Optiken detailliert berichten.

Schon Ende der 60er Jahre ließ die Innovationskraft des Unternehmens leider erkennbar nach.

1972/73 – Topcon Super D/DM wurden gebaut bis zum Ende der Kameraproduktion 1981.

Topcon_SuperD_900

Super D ist eigentlich noch die alte RE Super – Die Super DM ist stark überarbeitet im Sucher- und Motor-Winder-Bereich. Das letzte Spitzenmodell.

Ich bin weit davon entfernt, alle Topcon-Kamera-Modelle „entschlüsselt“ und eingeordnet zu haben. Insbesondere habe ich den Verdacht, dass die IC-1 Auto tatsächlich keine Zentralverschluss-Kamera ist, sondern die Unirex mit Schlitzverschluss („focal-plane“) und mit Beibehaltung des UV-Topcor-Bajonett-Anschlusses den UV-Objektiv-Besitzern eine Alternative bieten sollte. Ich habe das Thema Topcon ein bisschen ausführlicher behandelt, da es hierzulande sehr wenig bekannt ist. (Wer Japanisch kann, sollte mal in den Link http://www.topgabacho.jp/Topconclub/ schauen. Er enthält auf jeden Fall sehr viele gute Bilder!)

Topcon war in Europa präsent als ich studierte und dann jung im Beruf war. Ich träumte von ihr – für mich ist sie bis heute die schönste SLR je – und kaufte mir dann eine Minolta SR-T 101 … Warum diese herausragenden Kameras und Objektive dann so schnell wieder verschwanden, ist mir nicht bekannt. Im Jahr 2003 (40. Jubiläum?) legte Cosina noch einmal einen Nachbau des legendären „Auto-Topcor 5,8cm f1.4“ auf.

Firma Topcon ist heute Weltmarktführer bei Geodäsie-Geräten.

1959 – Canonflex – Hersteller: Canon, Tokio, Japan; gegr. 1937 als Kamerabauwerkstatt. Heute ist Canon der größte Kamerabauer der Welt.

Die Canonflex (3 Modelle bis 1964) hatte Wechselprisma, R-Bajonett-Objektivanschluss („breech-lock“), Schnellspannhebel und automatische Springblende und Rückschwingspiegel. Sie war sehr solide (Gehäuse über 900 gr) und hatte ein klares Design.

Man kann diese frühen Modelle, die einzelne Features der Nikon F voraus hatten, durchaus als Fehlstart gegenüber Nikon bezeichnen: einige Konstruktionsdetails standen dem Erfolg klar im wege (wie der Schnellspannhebel am Kameraboden – sehr ungünstig bei arbeit auf dem Stativ – und es gab zu Beginn keine Weitwinkelobjektive!. Von den 3 Modellen mit R-Bajonett wurden bis 1964 gut 100.000 Kameras gebaut – während Nikon gleich mit der Nikon F bis 1974 über 850.000 (lt.Cameraquest) verkaufte.

Canon hatte nach Gründung zunächst die Objektive (für die Messsucherkameras) von Nikon zugekauft und hatte erst 1947 mit einer Objektiv-Fertigung begonnen (Serenar). Canon stellte die Messsucher-Kameras erst 1968 ein („das Beste“ kam quasi noch nach 1959, z.B. mit dem 50mm f0.95 an der Canon7 im Jahr 1961!) – während Nikon sich praktisch sofort voll auf die SLR konzentrierte.

1964 wurde mit der Canon F-Serie das FL/FD-Bajonett und das Schnelladesystem für den Kleinbildfilm eingeführt. Damit hatte Canon Tritt gefasst und wurde erfolgreich. Das wichtigste ist sicher das Profi-Modell F-1 (1971) mit den Folgevarianten F-1n (1976) und F-1 New (ab 1981 … bis mindestens 1988 gebaut). Alle Varianten waren mit Wechselsuchern (5 Modelle, 10 Einstellscheiben!) ausgestattet, die je nach Typ Nachführbelichtung, Zeitautomatik oder Blendenautonmatik ermöglichten. Es gab natürlich Motorantrieb, sensationell war das 1972 vorgestellte F-1 Highspeed mit Teildurchlässigem Spiegel und Motor, das 9 Bilder/sec schaffte. Canon tat alles, um den Vorsprung, den Nikon im Profi-Segment hatte, aufzuholen. Aber das dauerte noch – entscheidend wurde hier der Einstieg in das AF-Zeitalter! (ab 1987)

Die F-1 New wird als Canon-Profi-Modell erst von der EOS-1 im Jahr 1989 abgelöst!

Die Canon A-Serie für Amateur-Kameras wurde von 1976 – 1983 gebaut. Zwei Modelle ragen heraus: AE-1 (1976) war die erste SLR-Kamera mit Mikroprozessor-Steuerung, die   A-1 die zweite SLR (nach Minolta XD-7) mit Zeit- und Blenden-Automatik.

Beobachtung: während Firma Canon im Profi-Segment Nikon hinterherjagte, trieb Minolta Canon im Amateur-Segment vor sich her! Die Tatsache, dass Canon BEIDE Herausforderungen parallel gemeistert hat, hat der Firma schließlich die heute bestehende Spitzenposition im Markt eingebracht.

Die bedeutende Rolle von Minolta im damligen Amateur-Segmentwird besonders daran deutlich als Minolta 1985 überraschend als erster Anbieter die auf den Amateurmarkt zielende Autofokus-Modellreihe 7000 AF/9000 AF heraus bringt: Canon bringt in aller Eile für zwei Jahre – vor der für 1987 geplanten AF-Baureihe EOS mit neuem EF-Bajonett – eine AF-Kamera in der T-Reihe (T-80) heraus für deren AF-Betrieb sie 3 spezielle mit AF-Motoren ausgestattete Objektive (mit FD-Bajonett!) Anbot. Auch Nikon hatte ja eilig eine solche „Zwischenlösung“ mit der Nikon F3 AF eingeschoben, ehe eine „echte“ AF-Kamera folgte (F-501 in 1986).

Beide konnten nicht verhindern, dass Minolta wegen des großen Erfolges seiner AF-Kamera-Reihe vorübergehend zum mengenmäßig größten SLR-Kamerahersteller wurde.

1983/84 – Canon T-50 und T-70 – mit fest eingebautem Prisma, eingebautem Filmtransport-Motor und weiterhin FD-Bajonett (bis 1989) – schließlich 1986 das Spitzenmodell T-90 im wegweisenden Design von Luigi Colani, das bis heute  die Canon SLR-Spitzen-Modelle eindrucksvoll kennzeichnet.

CanonT90_900.jpg

1987 – Canon EOS-650: Die EOS-Baureihe läutet das „echte“ AF-Zeitalter ein, mit einem neuen, erheblich vergrößerten  EF-Bajonett. Das Profi-Spitzenmodell EOS-1 kam 1989 auf den Markt. Nomenklatur der EOS-Reihe: EOS-N: Profi-Kameras (EOS-1/-3/-5); EOS-NN: gehobenes Amateursegment (EOS-10/-30/-33/-50); EOS-NNN: Amateur-Segment.

Ab jetzt spornen sich Canon und Nikon abwechselnd zu den jeweiligen technischen Innovationen im 5-Jahres Rhythmus an – was gut für den Kunden war und dazu führte, dass die Entscheidung, wer auf diesem Markt führend ist, sich ab jetzt nur zwischen Nikon und Canon entschied. Da konne nun niemand mehr mithalten. Ich entschied mich ca. 1990 ebenfalls für Canon (EOS-10).

Kameraseitig wurden erst im digitalen Zeitalter die Karten neu gemischt – was heute, 2020, wieder zu neuen, spannenden Konstellationen führt – aber mit Rückgang der Bedeutung der SLR verbunden ist.

Canon D-SLR:

Nach ersten Vorläufern 1995 bis 1998 in Zusammenarbeit mit Kodak (EOS-DCS3/DCS2000/DCS3000 – mit 2 oder 6 MP-Digitalrückteil an der EOS-1N) – startet Canon bereits 2000 mit ersten semiprofessionellen D-SLR (EOS D30) und setzt den Maßstab mit dem ersten professionellen Modell EOS D-1s Mark II mit Vollformat 24x36mm in 2004 (16,7 MP). Canon entwickelt und fertigt die Bild-Sensoren nun selbst. Auch hatte Canon bereits 2004 mit den 8,5 Bildern/sec (EOS D1 Mark II – 8,2 MP) eine Marke gesetzt, um ab jetzt Platzhirsch im digitalen SLR-Zeitalter zu bleiben. Im Jahr 2015 überspringt Canon die Schwelle von 50 MP – in einer semiprofessionellen D-SLR.

Die Bedeutung, die bei der Einführung des Autofokus die Fokussier-Geschwindigkeit hatte, übernimmt nun die Verarbeitungsgeschwindigkeit der riesigen Datenmengen als technologische Barriere in der D-SLR.

Die Kamera wird zu einem Hochleistungs-Computer – aber nicht nur bezüglich der Transfer- und Verarbeitungs-Geschwindigkeit der Daten (mit 8, 12 oder 16 bit), sondern immer mehr auch bezüglich der Sensorstruktur und der Algorithmen, die aus den elektrischen Impulsen ein „Bild“ machen – was ja schließlich das Ziel der ganzen Übung ist und bleibt!

Außer Canon und Nikon hat meines Wissens HEUTE (2020) nur noch Sony D-SLR im Programm mit der A900 (2008 – 25 MP) und der A99 II (2016 – 42 MP) – in Minolta-Nachfolge mit dem A-Mount.

Canon spiegellose digitale Systemkameras: ab 2015 hat Canon mit dem APS-C-Sensorformat spiegellose digitale Systemkameras (M-Baureihe) eingeführt – inzwischen (2019) mit bis zu 30 MP.

Erst 2018 bringt Canon mit der R-Baureihe (und neuem R-Bajonett wegen des kürzeren Auflagemaßes) eine spiegellose Systemkamera (im Format 24x36mm) auf den Markt – führt aber die D-SLR-Baureihen weiter.

Die SLR-Objektive im D-SLR-Zeitalter:

Es ist nicht selbstverständlich, dass die über ein Jahrhundert optimierten „Analog“-Objektive auch am Digital-Sensor ihre gewohnte Leitung entfalten können. Der Bildsensor ist kein Film – es liegen nun neue optische Elemente im Strahlengang: Anti-Aliasing-Filter, UV-Filter, die winzigen Linsen auf den Halbleiter-Elementen (Pixel). Das muss idealerweise bei der Berechnung der Optiken nun berücksichtigt werden – und hat nun auch 1-2 Jahrzehnte gebraucht, um Stand der Technik zu werden. In vielen Fällen ist das Anti-Aliasing-Filter schon weggefallen.

Manche analoge Objektive haben weiterhin uneingeschränkt ihren Dienst getan – andere überhaupt nicht, oder mit gewissen Einschränkungen. Sehr flache Einfallswinkel der Lichtstrahlen auf den Sensor gehen gar nicht und manchmal gibt es offensichtlich Reflexionen zwischen Baugruppen, die den Kontrast stark beeinträchtigen können. Bei meinen Untersuchungen von historischen Objetiven an Digital-Systemkameras habe ich festgestellt, dass dies nicht vorherzusagen ist. „Try-and-error“ ist hier angesagt! Aber dass ein 15mm-Hologon-Objektiv an einem Vollformatsensor nicht funktioniert, kann man vorhersehen…

1959 – Nikon F – Hersteller: Nippon Kogaku K. K. , seit 1988: K.K. Nikon (Nikon Corporation). Konstruktionsleiter: Fuketa. Mechanische SLR-Kamera mit festem Prisma und F-Bajonett-Objektiv-Anschluss. Das Basis-Bajonett ist geometrisch bis heute unverändert (vorwärts/rückwärts-kompatibel) – funktional erweitert 1977: AI-Typ, 1982: AI-S. Auch bei Einführung des Autofokus entschied sich Nikon doch, das (im Durchmesser relativ kleine) Grundbajonett beizubehalten im Sinne ununterbrochener Kompatibilität. Ich persönlich sehe in dieser Entscheidung (die mich damals schon sehr gewundert hatte) einen der Gründe dafür, dass Nikon die Spitzenstellung schließlich doch im Markt an Canon verlor.

Nippon Kogaku wurde 1917 aus drei miteinander fusionierten Gesellschaften des Mitsubishi-Konzerns in Tokio gegrümdet: aus Teilen eines Messinstrumente-Herstellers, einem Glas-Hersteller und einer optischen Werkstatt (Mikroskope etc.) – Nikon ist noch heute Bestandteil des Mitsubishi-Konzerns. Von Anfang an, hat Nikon eine eigene Glasherstellung gehab, was ein großer technologischer Vorteil ist. Seit 1925 stellt Nikon Foto-Objektive her (50 Mio. Objektive bis 2009!), die seit 1932 bis heute Nikkor heißen. Der Name Nikon für die Kameras wird seit 1946 verwendet.

Die Nikon F enthielt gleichzeitig ALLE neuen technischen Features, die bis dahin bei SLR bekannt waren – was sonst bei keiner anderen SLR zu dieser Zeit der Fall war. Sie hatte bereits wie alle F-Nikons, bis auf F6 , Wechselsucher. Darüberhinaus bot sie ERSTMALS ein Sucherbild mit 100%! Nenneswerte Mängel hatte sie nicht. Mit dieser Ausstattung nach dem Stand der Technik sprach sie Professionals an und konnte 12 Jahre (+2 Jahre Weiterbau…) erfolgreich am Markt gehalten werden: 850.000 Exempl. bis 1974 (lt. Cameraquest).

1971 -Nachfolger Nikon F2 war die letzte rein mechanische Nikon – modernisiert und als modularen professionellen System vervollständigt – auch sie bleieb 9 Jahre am Markt.

1980 kam die Nikon F3 auf den Markt – sie wurde bis 2002 gebaut (22 Jahre!) und überlebte sogar ihre Nachfolgerin! – auch in Varianten (wie vorübergehend als Nikon F3 AF – 1983). Es ist schlechthin DIE legendäre Profi-SLR der Analog- und Vor-AF-Zeit. Spätestens  diese Kamera begründete den Status der Nikon-SLR als Profi-Werkzeug. Wesentlichste Änderung: die Belichtungsmeßzelle sitzt nicht mehr im Sucher, sondern nun in der Kamera hinter dem Spiegel.

1988 – Nikon F4 ist dann die erste vollwertige Nikon-Profi-SLR mit Autofokus – nach der Amateur-AF-Kamera F-501 von 1986. Gleichzeitig erschien 1988 die semi-Professionelle Nikon F-801. Auch bei der F4 gab es Varianten. Die Nikon F3 wurde 15 Jahre lang von den Profi-Fotografen weiter gekauft, die sich mit dem Autofokus nicht anfreunden wollten/konnten. Im Bereich der Belichtungsmessung bietet die F4 ein großes Bündel neuer Möglichkeiten.

Die zu geringe Autofokus-Geschwindigkeit bei der F4 kostete Nikon die Marktführerschaft im Profi-Segment, da Canon gleichzeitig mit der EOS-1 einen wesentlich schnelleren AF brachte (besonders wegen des Ultraschallantriebs der Objektive).

1996 wurde die F4 durch die legendäre Nikon F5 abgelöst, die zusammen mit Ultraschall-Fokusmotoren in den Objektiven wieder Marktanteile zurück holte.  Sie gilt als Höhepunkt der Kamerabau-Technik des analogen SLR-Zeitalters. Auf der F5 basierten die Umbauten von Kodak zu den ersten professionellen D-SLRs 1999-2001 (z.B. DCS 760).

Nikon F6 wurde 2004 eher unerwartet zu Beginnd es digitalen Zeitalters noch vorgestellt und ist die einzige analoge Profi-Kamera, die noch heute (2020) gebaut wird (im Amateur-Sektor nimmt wohl Zenit aus Russland diese Rolle ein).

Nikon D-SLR:

Wie bei Canon, gab es zunächst mit Digitalrückteil von Kodak modifizierte Varianten der professionellen F5 (1999 – 2001, DCS 620/660/760).

Nikon startete mit den professionellen Kameras Nikon D 1 und D 2 im APS-Format („DX“ d.h. 16 x 24 mm bei Nikon). Viele Sensoren wurden von Nikon selbst hergestellt. Das galt auch für das Amateur- und Semiprofessionelle Segment (D 100, D 50 etc.). Es wurde weiterhin das Nikon-F-Bajonett verwendet. Erst ab 2008 – mit der Nikon D 3X, D 700 – führte Nikon das digitale Vollformat 24x36mm ein. Die semiprofessionellen D-SLR mit hochauflösenden Sensoren (>36,3 MP – nun mit Sony-Sensoren) wurden mit der D 800-Baureihe ab 2012 gebaut – und damit für 2-3 Jahre wieder gegenüber Canon führend… bis 2015 zur Canon 5Ds/r.

Nikon spiegellose Systemkameras: Erst 2018 bringt Nikon mit der Z-Baureihe (und neuem Z-Bajonett wegen des kürzeren Auflagemaßes) eine spiegellose digitale Systemkamera (im Format 24x36mm) auf den Markt – führt aber die D-SLR-Baureihen (ebenso wie die analoge F6) weiter.

1959 – Yashica Pentamatic – Hersteller: Yashica; Mechanische SLR mit fest eingebautem Pentaprisma und proprietärem Objektiv-Bajonett (nicht das spätere C/Y-Baj.!) Firma wurde 1949 als Kamerahersteller gegründet und war zunächst bekannt für Leica-Kopien und TLR-Kameras.

1968 TL Electro – erste SLR mit vollelektronischer Belichtungssteuerung.

1972 Kooperations-Vertrag mit Zeiss Ikon und F.A.Porsche, woraus ab 1974 die SLR-Baureihe Contax-RTS hervor ging, die Yashica baute. Weiter siehe oben bei Contax RTS! Danach führte Yashica das neue c/y-Bajonett auch bei den eigenen SLR-Modellen ein (ab FX-1).

Yashica wurde 1983 von Kyocera übernommen – die SLR-Fertigung wurde dort 2005 eingestellt.

1958/59 – Minolta SR-2/-1 – Hersteller: Chiyoda Kōgaku Seikō/ab 1962: Minolta Camera Company (gegründet 1928 – aber erst 1962 führt die Firma den Namen Minolta als Firmennamen!) SR-2 ist eine SLR mit fest eingbautem Prisma, Rückschwingspiegel und SR-Bajonett, das für alle non-AF-Kameras bis 1985 kompatibel bleiben wird.

1960 folgt SR-3 mit gekuppeltem Belichtungsmesser, 1965 die SR-7 . Zwischendurch brachte die Firma eine „Minolta ER“ heraus, mit Zentralverschluß, ähnlich der Contaflex II – ohne Nachfolger.

Der Aufstieg zum weltweit mengenmäßig größten SLR-Hersteller in den 70er Jahren begann 1966 mit der SR-T 101 – der ersten SRT mit Offenblenden-Meßtechnik und einem intelligenten Belichtungsmess-System.

Minolta fertigte Objektive (Bezeichnung: Rokkor) in hervorragender Qualität und immer wieder in innovativer Bauweise (z.B. das Zoom Rokkor 40-80mm f2.8 !) – schon seit den frühen 1940er Jahren verfügte Minolta über eine eigene Glasschmelze und führte bereits 1946 als erster Optik-Hersteller in Japan die Beschichtung ein!

1972 wurde eine Kooperation zwischen Minolta und Leitz vereinbart. Aus dieser Zusammenarbeit ging 1976 die Leica R3 hervor (im Wesentlichen auf Basis der Minolta XE).

Außerdem übernahm Leitz mehrere Minolta Objektiv-Designs: 24mm f2.8, Fisheye 16mm f2.8, 35-70mm f3.5 und 70-210mm f4.

1977 folgte die XM-/XD-/XE-/XG-Baureihe mit der sich Minolta (nach der XM!) konsequent wieder dem Amateur-Segment zuwendete.

Minolta X-700 bedeutete 1981 den Schritt zu elektronisch kontrolliertem Verschluss mit TTL-Belichtungskontrolle durch das vom Film reflektierte Licht  (auch TTL-Blitz ermöglichend) – was Olympus schon mit der OM-2N früher eingeführt hatte. Wie üblich folgten viele Modellvarianten (X-300, 300S, 300N, 370, 500, 570 and 600. The X-500) – besonders preiswertere. In dieser Zeit ließ Minolta erstmals billige Modelle in China herstellen.

1985 brachte Minolta die erste Autofocus-SLR mit Gehäuse-gestütztem AF-Antrieb in Großserie auf den Markt, die Minolta 7000/9000 AF – und soll in der Folge wieder einige Jahre der mengenmäßig größte SLR-Hersteller der Welt gewesen sein.

Mit den folgendenAF-SLR Baureihen Dynax 7/9 xi (1992) und 7/9/9Ti und 800si zog immer mehr Automatisierung und elektronische Steuerung in die Kameras ein.

2003 fusionierte Minolta mit Konica zu Konica Minolta.

Die großen Erfolge der frühen AF-SLR-Zeit hatten bei Minolta allerdings auch eine Kehrseite: Honeywell klagte gegen Minolta wegen Patentverletzung durch das Minolta-AF-System. Nach Jahren gewann Honeywell den Prozess und  Minolta mußte 1991 über 127 Mio. Dollar Lizenzen nachzahlen. Das war vor allem deshalb tragisch, weil Minolta glaubte, durch ein von Leica erworbenes AF-Patent aus den 70er Jahren abgesichert zu sein. (Leica meinte, dass ein Leica-Fotograf sowas nicht brauche…. und hat konsequent nie eine AF-SLR gebaut!) Der Lizenz-Fall hat Minolta massiv finanziell geschwächt. Dies wurde durch eine weiteren Fehlentscheidung verschärft: Minolta investierte Massiv in das APS-System (im Vertrauen auf Kodaks Macht, das durchzusetzen) anstatt in Digitale Fotografie (die dann ihrerseits dazu beitrug, das APS sich nicht mehr durchsetzen konnte!).

2004 und 2005 kamen die beiden ersten D-SLR-Kameras von Minolta auf den Markt: Konica Minolta Dynax 7D und 5D. (6 MP) Die Bildqualität der 7D war ausgezeichnet. Nur die Fujifilm Finepix S3 Pro war (CCD – auch mit 6 MP) damals nach meiner Erfahrung noch etwas besser, sie hatte allerdings zwei Photodioden je Pixel.

2006 stellte Konica Minolta die Kameraproduktion ein – die digitale Fotosparte wurde an SONY verkauft. Einige der ausgezeichneten Minolta AF-Optiken (A-Mount, der von Sony für D-SLR übernommen wurde) wurden von Sony optisch unverändert  bis weit in die 2010er Jahre Geliefert.

1962/63 – Fujicarex II – Hersteller: Fuji Foto Optical; Festes Prisma, Rückschwingspiegel öund Zentralverschluss (Copal) – mit wechselbarem Objektiv-Vorderteil. Ähnlich Contaflex III.

Firma wurde 1934 gegründet für Filmmaterial. 2006 umbenannt in „Fujifilm„.

1971 folgte die Fujica ST701 mit Wechselobjektiv-Anschluss M42, festem Pentaprisma und weltweit erstmals mit der schnellen Si-Photo-Diode.

1979 Umstellung auf X-Mount-Bajonett-Anschluß – STX-1. „Fujinon“ baute ein renommiertes Zuliefergeschäft hochwertiger Foto-Objektive an andere Kamerahersteller auf (z.B. Hasselblad).

In 2000 bis 2006 trat Fuji mit der Marke „FinePix“ mit einigen sehr hochwertigen D-SLR-Kameras auf, deren Kameragehäuse auf Nikon-Modellen (N80/F80) basierten: S1 Pro, S2 Pro, S3 Pro und S5 Pro, die auf speziellen Sensoren mit bis zu 12,34 MP basierten. Ich besaß die S3 Pro und sie hatte meiner Meinung nach die beste Farbwiedergabe aller D-SLR jener Periode.

Nachhaltig große Bedeutung erlangt Fujifilm erst wieder seit den 2010er Jahren mit spiegellosen Systemkameras (APS-C und Mittelformat-Sensoren).

1963 – Olympus Pen F/FT – Hersteller: Olympus Optical; Konstrukteur Yoshihisa MAITANI (1933 – 2009). Pen F war eine  Halbformat-SLR mit fest eingebautem Porro-Prisma und Rotationsverschluß und entwickelte sich weltweit zum „coolen“ Statussymbol für die jüngere Generation – klein und sehr chic aber eine Zehnerpotenz billiger als die Leica – ich habe auch mal davon geträumt…

Olympus – 1919 zur Herstellung von Mikroskopen und Thermometern gegründet trägt erst seit 1949 den Namen „Olympus“ (Achtung: Globalisierung! – vorher trug die Firma den Namen des japanischen Götterberges „Takachiho“…) – ab 1963 ist es in Europa aktiv (Hamburg).

1972 wurde die ebenfalls von Maitani entwickelte professionelle Systemkamera OM1 vorgestellt. Maitani hatte jahrelang systematische Konstruktionsanalysen durchgeführt zur Realisierung einer möglichst kompakten SLR – was ihm mit großem Erfolg gelang. In dem Interview in dem folgenden Link (am Ende des Textes) beschreibt Maitani sehr eindrucksvoll seine Entwicklungs-Philosophie:

http://olympus.dementix.org/eSIF/om-sif/concepts.htm.

Die OM-2N war 1977 die erste SLR-Kamera, in der die Belichtung direkt über das von der Filmoberfläche reflektierte Licht geregelt wurde – was bei Minolta erst 1981 mit der X-700 genutzt wurde.

Es folgten OM-2 ab 1975, OM-100 ab 1978, OM-3 und OM-4 ab 1983, OM-4Ti ab 1987, OM-3TI ab 1995. Das OM-System wurde 2002 eingestellt. Zwischendurch hatte Olympus versucht eine Autofukus-SLR zu etablieren (OM-707) – aber zu halbherzig: das Projekt floppte, sodaß die analoge SLR von Olympus 2003 verschwand.

Die Objektive der OM-Baureihe waren sehr kompakt, lichtstark und hatten sehr gute Qualität – viele Objektive gewannen Kult-Status, z.B. das legendäre 180mm f2.0 („The holy Grail“).

Schließlich startete Olympus 2003 (mit Kodak, Leica und Panasonic zusammen) eine digitale SLR-Baureihe für das FourThirds-Sensoren-Format (Bildkreis-Durchmesser 21,63mm): die digitale E-System: E-1 (5 MP), E-3 (8 MP), E-5 (12 MP). Natürlich dann mit Autofokus!

Diese letzten echten SLR-Kameras von Olympus hatten höchstes professionelles Niveau.

Ab 2009 stellte Olympus auf das Micro-FourThirds-System um, das waren keine SLR mehr, sondern spiegellose Systemkameras mit dem gleichen Bildkreis und Sensorformat und kürzerem Auflagemaß.

1964 – Seagul Reflex DF – Hersteller: Shanghai Camera Factory, China. Mechanische, manuell fokussierte SLR als Nachbau von Minolta SLR mit Minolta SR-Bajonett. Keine eigenen Innovationen. In einem Wikipedia-Artikel werden 25 verschiedene Modelle aufgeführt – eines führ sogar den offiziellen Minolta Typ (-102b) im Namen. Stückzahlen und Stand heute sind mir nicht bekannt – 1999 sollen aber 600.000 Kameras (aller Arten – nicht nur SLR) produziert worden sein – insgesamt seit Firmengründung 1958 über 20 Millionen.

1965 – Konica Auto S -Hersteller: Konishiroku Photo Industry Co. (ab 1987 Konica Corporation – 2003 Fusion mit Minolta zur „Konica Minolta“ ). Konica ist quasi die „japanische Kodak“ – 1873 zur Herstellung von Kinofilm gegründet. Seit 1903 Fotopapier, seit 1929 fotografische Filme. Kameraherstellung seit 1882, seit 1948 35mm-Kameras.

1968 – erste SLR mit TTL-Belichtungsautomatik (Konica Autoreflex 35mm FTA) und 1975 erste SLR mit eingebautem Motor.

(Weiterhin bemerkenswert: 1992 brachte Konica entgegen dem allgemeinen Trend wieder eine Meßsucherkamera heraus: die Hexar war damals die leiseste Kleinbildkamera – gefolgt 2003 von der Hexar RF, meiner Meinung nach, die beste Leica-M, die je gebaut wurde!)

1970 – RICOH TLS-401 – Hersteller: RICOH. Eine SLR mit fest eingebautem Prisma und M42-Objektiv-Anschluß nach dem Stand der damaligen Technik.

Ab 1979 wurde die KR-, danach die XR-Familie mit Pentax K-Bajonett eingeführt – 1995 kam das letzte Modell auf den Markt. Ricoh hatte 1938 mit Kleinbild-Kameras angefangen (M39), übernahm 2011 aber schließlich Pentax! – nach dem Muster: die kaufmännisch erfolgreiche Firma übernimmt den jahrzehntelangen Innovator…

Eine kurze Schlußbemerkung:

Wenn man sich die Gesamt-Entwicklung der SLR-Technik bis heute (2020) ansieht, so muss man feststellen, dass letzlich nur die Unternehmen nachhaltig zu dauerhafter Größe kommen konnten, die SOWOHL Kameras ALS AUCH Objektive herstellten. (Siehe: Nikon, Canon, Sony in Nachfolge Minolta, Fujifilm, Olympus, Pentax.)