My Crazy Lenses / Meine sehr speziellen Objektive – No.1: Focal-Length 40 mm / Die Brennweite 40 mm

40 mm/45 mm (or 43 mm) is one of my very favorite focal lengths: in fact it corresponds very close to the diagonal of the 35 mm still photo format!

… and it is the perfect focal length for street photography – and for all situations in which you have just one focal legth to choose, which means: you have no choice really …

The first camera, whith which I was „socialized“ for Single Lens Reflex Cameras was the Contaflex II with Tessar 45mm f2.8 of 1953.


It was the time before the German photo industry „suddenly“ collapsed and when the local camera dealer still could repair a Contaflex II mechanically just within a day! (And there was nothing else really but mechanics – you will not seriously call a Selen photosensitive cell „electronics“?!)

This history may have strongly influenced me in my preference for this focal length – but you may also find one thousand good reasons for this focal length, which is the „real normal focal length = the diagonal of the 24 x 36-format“ indeed: longer than 35mm, shorter than 50mm.

In early times most of the point-and-shoot-cameras with fixed (built-in) normal lenses had 38mm to 45mm lenses … and there are still some today.

In fact this focal length was ALWAYS present in the photo industry for system cameras – and I own some of them:

Tessar 45mm f2.8 as fixed lens in the Contaflex II of 1953
„New“ Tessar 45mm f2.8 for Contax/Yashica-Mount – a 1983 design based on new glass
MD-Rokkor 45mm f2.0 – a pancace-type standard lens for Minolta SRT cameras of 1978
Minolta M-Rokkor 40mm f2.0 with Leica-M bayonet  (for the 1973 „CL“ Leica/Minolta)
Olympus 40mm f2.0 – an ultra compact pancake design of 1978 for OM cameras
Planar 45mm f2.0 for Contax G1/G2 of 1994

… and the modern available to-date lenses:
Fujinon 27mm f2.8 pancake design for APS-format X-trans sensors (correspond. to 43mm)
Panasonic 20mm f1.7 for Micro Fourthirds (corresponds to 40mm at FullFormat)
Batis (Distagon) 40mm f2.0 for Sony E-Mount (FullFormat) of 2018
Sigma 40mm f1.4 for Sony-E-Mount (FullFormat) of 2018
Fujinon 50mm f3.5 for Fujifilm GFX50/100 with sensor 44mm x 33mm

From this list of 11 lenses you can make the conclusion how important this focal length is to me!

… and there is an interval of 65 years in making betweeen all of these lenses!

There are other famous historical lenses, which are not available to me:

I once owned a Nikkor 45mm f2.8 pancake-lens of 1977 on the Nikon F3M – it was a just average Tessar design. The Pentax DA 45mm f2.8 Limited is famous (a Gaussian!). As far as I know, Canon never played around with something like that … nor did Leica! What a pitty!
There is as far as I know also a modern Voigtländer lens 40mm f2.0, which I never tried! As it is an „Ultron“-design (and also includes an aspherical lens) it should also be of top notch performance. About the Voigtländer Nokton 40mm f1.2 aspherical I know nothing but that it probably is a „Distagon“-type lens as my Batis is …

Now here is my odd couple of the week:

–> look at the Olympus 40mm f2.0 pancake vs the Sigma 40mm f1.4 !

Bild 1 / picture 1: Olympus OM 40mm f2.0 und Sigma 40mm f1.4 – David and Goliath?

The Olympus 40mm f2.0 is a modified (6 lens – 6 groups!) double Gauss design – but extremly sophisticated due to the extremely short physical length combined with a very respectable speed of 2.0 at a length of 26mm and weight of 146 grams – Filter diameter 49 mm … and the close-focusing ability to 0.3 meters in spite of its compactness! You must however consider, that the OM is made for an SLR: that means: to put it on the same mirrorless Sony-E-Mount-Camera, the adapter adds another 28 mm. But in spite of that – the optical construction is actually pressed into the 26 mm length – including space for a filter-thread… Sitting on my Olympus OM 3Ti camera body it is as perfect package!

The Sigma 40mm f1.4 DG HSM / Art for E-Mount is a monster weighing 1,200 grams and stretching over a length of 157mm. It is composed from 16 lenses, which are stacked nearly face-to-face in the volume of the assembly – including all types of modern glasses  … and even one aspherical lens! And it uses 82mm diameter filters … You could call this a „stretch-limousine“ of modern photo-technique … When you put it on a Sony A7R you feel crazy – and in the street everybody thinks, you are peeping into the crowd with a super-telephoto! That is somewhat embarrassing.

And no: it has NO tripod-thread somewhere near the lens+camera-center-of-gravity. So you have to balance the massive lens on one hand while you take care of that tiny miniaturized camera at the near end of it…

Could there be any rational sense in the making of the Sigma-Monster? Serving exactly the same purpose on the camera: taking a picture with an angle of view of circa 57 degrees?

O.k., lets try:

The lens has a very high speed – I do not know personally any other 40mm-lens with f1.4 so far  – at least for FullFormat. (There has been a 40mm f1.4 for Olympus Pen HalfFrame-Cameras in the nineteen-sixties and yes: there is even a Voigtländer Nokton 40mm f1.2 now for 35mm) … and this Sigma is the best photographic lens I know at present for 35mm-format (independent of focal length and brightness)  – a fact that might justify even the price … Beware: this is my personal ranking – nothing more nor less.

The optical qualitiy of the lens is overwhelming … I instantly saw the brilliant performance of this lens – just through the finder of my Sony camera! An extraordinary situation! At f1.4 !!!

So now let us look at the resolution facts measured with IMATEST. For this I use generally the Sony A7RM4. How much better is the super-ambitioned super-modern Sigma against the antique Olympus gem of 1978?

The spreadsheet shows some other historical and modern lenses for comparison purpose.

(Remark: As I cannot measure resolution with a fixed lens in an analog camera like the Contaflex II, I chose a typical 50mm-Tessar of the nineteen-fifty/sixties from Zeiss-Ikon for the first comparison-position. The „old“ Tessar from 1961 is what you expect from it (based on 1902 invention by Paul Rudolph): good anastigmatic design but a little bit soft.


Bild2 / picture 2: Resolution, edge-profile width, distortion and  CA for a group of 40/45mm-lenses for 35mm-FullFormat (plus corresponding Fujinon 27mm-lens for APS-sensor format)

(Bemerkung zu der hier neu hinzugefügten Spalte 4 – „Kantenschärfe“: das ist die Breite des Übergangs an einer standardisierten Hell-Dunkel-Kante von 10% bis 90% (in Bildmitte) – siehe untenstehendes Bild 2

Remark in reference to the column 4 width of „edge-profile“: this is the width of the transition from white to black at a standardized edge between 10% and 90% of brightness (in the center) – see picture 2 below, upper graph:


Bild 3 / picture 3: Edge profile (10-90% rise) – upper picture) and MTF-curve (lower) for Sigma 40mm f1.4 fully open (f1.4). Absolute perfect performance! Remarkable MTF-result: MTF is stunning 0.403 at Nyquist-frequency and drops slowly stopping down! Excelent lenses like the Batis 40mm f2.0 start at 0.3 and reach 0.35 at optimum f-stop (f4.0).

The optical quality-results of the Sigma 40mm f1.4 / Art (on the 62 MP Sony A7R4 –  Nyquist frequency: 3.168 LP/PH):

  • At f1.4 the weightet mean resolution of MTF30 over full frame is 93% Nyquist-frequency (center 102%, corner 78%)
  • 10-90% rise of edge profile is 0.96 pixels at f1.4 – which is lowest at this f-stop
  • MTF at Nyquist-frequency is 0.403 at f1.4 – going down to 0.34 at f5.6.
  • Center resolution is max. at f2.0 with 110% Nyquist-frequency (3.472 LP/PH)
  • weighted mean is max. at f5.6 with 99% Nyquist-frequency
  • at this f5.6 f-stop the corner-resolution (average over 4 corners!) reaches 88%
  • The differences of resolution between f2.0 and f8.0 are irrelevant under practical photographical aspects: 3.017 – 3.141 LP/PH weighted average over the full frame!
  • Distortion is -0.01% to -0.1% – at most f-stops around 0.05% – let’s say: „ZERO“
  • Lateral Chromatic Aberration (CA) is max. 0.1 mostly ca. 0.03 pixels around f5,6
  • Autofocus is excellent!
  • Due to the high image-contrast, manual focusing is very easy, fast and precise with this lens!

(LP/PH means: Line pairs per picture hight – picture hight für Sony A7R4 is 6336 pixels.)

Conclusion: The Sigma 40mm f1.4 is a highly convincing lens opticaly and in build quality. A bit closer focusing range would have been nice for its price (like the Batis 40f2.0 – and even the pancake OM-40mmf2.0 focuses closer!) – the handling on the Sony mirrorless camera is a serious task … I cannot recommend to put the camera with this lens on a tripod for day-to-day-work – just using the tripod-thread of the camera-body! (For my IMATEST test-frames it worked just o.k.). I would recommend to use this lens on a massive and solid D-SLR to be really happy with it! Personally I would use it for Street Photography and for Architecture – if there were not the handling restrictions.

And what about the optical merits of the compact side of the „Odd Couple„? —- The Olympus OM 40mm f2.0?

The merits are fantastic – even in comparison to modern lenses – especially under the aspect of its compactness. I was very amazed, when I read, that the lens was considered by Olympus as a low-cost alternative to other standard lenses (entered at just below 80 Dollars!). In spite of that (and the quality!) there were not so many sold … (good for the price on the second hand market!).

This lens was designed just a few years before the exciting new glass-types (like ED-glass) entered the industry – delivered from 1978. In the center it is just about 3% behind the Batis – even open at f2.0. In the corners it starts low – typical for the time (see the MD 45mm f2.0). Stopped down to f8 it improves dramatically in the corners (at 90% of the FOV!) – resolving ca. 7% close to the corner performance of the Batis 40mm. This resolution-perfomance of the OM 40mm f2.0 is much better than it could be brougt practically to the normal analog film-emulsions of the 1970s times (or even today) – with good contrast at the same time.

The price, this Olympus OM-lens has to pay for its compactness is obviously the distortion (at -1.5% still really acceptable for the time) and the CA – twice as big than contemporary „standard-Lenses“ and 20 times larger than typical today (not to forget both properties could be corrected afterwards today as well!).

Stopped down this ultra-compact Olympus OM-gem  40mm f2.0 reaches results in practical picture-taking, which use the resolution of the 62 MP mirrorless sensor seriously! Look at the two comparison-shots of a Montbretia-colony below, which are taken free-hand, manual focussing. The depth of the scene allows to judge, where the sharpness-plane is. And with a large number of similar objects you have the chance, to hit one of these with the focus-point exactly. At least you can tell: no – it is not the lens, which is not sharp: it is you, who focused wrong …

I chose a „nature-scene“, because in this you have the chance, that below the larger structure of the object there is still a sub-structure … and below that another sub-structure … and so on! The picture of a bicycle-frame does not offer too much of that … I did focus at the stamens of the highest upright blossoms near the center. (Natural sunlight came from the right side.)


Bild 4 /picture 4: The scene for the comparison shot – here with Olympus OM 40mm f2.0 at f8  – distance ca. 0.9 m (on Sony A7R4) – MANUAL focussing

Following are sections at 100%-view-level (no corrections made on the data-file):

Here with the Sigma-lens I exactly hit the target, which I focused (blossom in the middle of the three) – on a big screen you see the wonderfull plasticity of the stamens-details even on this level of enlargment. Red is a difficult colour and the contrast within the blossom-leaves is very low.


Bild 5 /picture 5: Detail of this scene – here with Sigma 40mm f1.4 at f8 (H:1325 pixel)

Next is taken with the Olympus OM 40mm f2.0: the focus sits about one cm more in front compared to the Sigma-shot: here it is the right blossom with stamens – nearly as sharp as with the sigma. I had not noticed, that a wasp had settled on the Montbretia flower – exactly in the focal plane …!


Bild 6 / picture 6: Detail of the scene with Olympus OM 40mm f2.0 at f8 (H: 1300 pixel)

Next picture:  Look how the insect pops out from the picture with the Olympus OM-lens at 0.9 meters focusing distance, with a surprising plasticity even at 100% viewing-enlargement (see picture 7) – even the fine hairs on the insects body starting to show.


Bild 7 /picture 7: Detail of a second shot with the wasp taken with Olympus OM 40mm f2.0 at f8 (height: 763 pixel) – at 100%-enlargement (picture taken at distance 0.9 meters!)

Conclusion: if you like to stay nearly „invisible“ in the street (where corner-resolution rarely matters!) and if you are well used to and experienced with manual focusing (MF), this more than 40 years old Olympus lens-design still is a valid option to use – even on the Sony A7R4! My copy still is clear and contrasty (obviously!). Near the center, the detail-resolution is really comparable to the Sigma monster-lens stopped down (f5.6 … 8.0). The merits of the Sigma-lens are its phantastic performance between f1.4 and f2.8 and into the corners – at practically zero distortion and CA!

The closest modern competitor to the Sigma 40mm is the Batis 40mm f2.0 (Distagon), which is just slightly behind the Sigma in every single optical property – fortunately it is also somewhat behind in price … and very-very-much lower in weight. As mentioned already it focuses very close! In practical picture-taking situations, you would probably not be able to tell which picture is made with the Sigma and which with the Zeiss-Batis – if close focusing is not part of the game…

The optical properties of all the other historical lenses in the comparison show very well the typical development in optical quality of standard-lenses over the time since just shortly after World War II (from 1953 – when I was 8 years old).

Two of these lenses ar made not for SLRs but for Rangefinder-Cameras, with the typical short distance between the rear of the lens and the film/sensor (rear focus). Especially at wider field of view this leads to light-rays, hitting at very flat angles onto the picture-plane. That is no problem with analog film – but a desaster with digital sensors!

These RF-lenses are the Minolta-M 40mm f2.0 (for Leica-M-Mount, coming with the Minolta CL in 1973) and the Planar 45mm f2.0 for the legendary (Autofocus!) Contax G1/G2 – early 1990s. Both are suffering severely under the oblique-ray-problem on the Sony-Sensor leading to very low corner-resolution in my measurements! This does not reflect the real performance on analog film!

The Planar 45mm f2.0 was famous as one of the best standard-lenses of its time – and I can confirm, that there is no such corner-resolution issues on analog film with my Contax G2. Interesting, that the issue vanishes stopped down to f8. Together with the Sonnar 90mm f2.8 on the Contax G2 you had one of the best lens-sets  of the 90s (plus autofucus!) on one of the most beautiful cameras EVER… That you could additionally have a crazy HOLOGON 16mm f8 on this camera makes it even more remarkable.

Sensational is the „New Zeiss Tessar“ 45mm f2.8 for Contax SLR – an extreme pancake-lens  (length 16mm !) based on the new glass-types of the early 1980s. In this Zeiss has extended the performance of the famous 4-lens-Triplet (invented 1902) to the level of the best double-gauss designs (Olympus 40mm and Contax-G-Planar 45mm). Only the edge-profile-sharpness did not arrive at the level of the Gaussians. It was also edited as aniversary-lenses for both Contax-aniversaries 1992 (60th) and 2002 (70th) – the latter one together with the Contax Aria: a much beloved combination, which I owned once.

Stopped down (to f8-f11) it nearly reaches the performance of the modern Batis 40mm! This lens was very expensive for a 4-lens design (starting at DM 698,00 – later € 449,00)! Due to this probably not too many should have been sold – however, still today it is legendary! The legend is justified by the measured data.

The Angénieux-Zoom 45-90mm f2,8: I could not resist to put this first Photo-Zoom of Angénieux (designed ca. 1964 – delivered exclusively for Leica SL/Leica R from 1968 to 1980!) into this comparison. The reason: in the 1960-70s in Germany, the so called „German doctrine“ was common sense, which says: „No zoom-lens can ever reach the performance of a fixed-focal-length lens!“ I can testimony this myself: that is what I thought at that time, too. And it was unfortunately confirmed, after we bought the first cheap zoom-lenses for amateurs.

For the professional cine-lens sector, this was not true any more since 1956/1960 – when Pierre Angénieux launched the first 4x-cine-zoom-lenses in production … and 10x-zooms since 1964. (More details about this in my article about Pierre Angénieux – a detailed analysis about his photo-zooms will follow soon in this blog.)

Look at the resolution-data of the 45-90mm-Zoom at 45mm: it reaches 96% of Nyquist-frequency on the 62 MP-Sony in the center. It is on par with fixed-focals of that time – and even wide open it surpasses them in the corners!

Finally I put in at the end of the comparison list, the (in my opinion) most under-rated Fujinon-X pancake-lens 27mm f2.8 (corresponding to 43mm at full-frame). It reaches 125% Nyquist at f4.0 on the Fujifilm H-1 (24 MP), has low distortion and perfect CA and corner-sharpness values. It is a bit soft in the corners wide open. Perfect for street-photography!

Berlin, 7. August 2020

fotosaurier – Herbert Börger

P.S.: I personally own all lenses and cameras, about which I am writing here in my blog. There are no lenses, which the maker or distributer has given to me for free or temporarily. And as you see, there is no advertisement in my blog… and I do not ask for other „support“ from you than that you tell me, if you have found an error. Of course, you are welcome to share your own experience with us in comments.

PPS: Parallel to the Sony A7R4 I shot the same scene with the 50mm f3.5 lens on the Fujifilm GFX100 (also stopped down to f8.0) – which corresponds exactly to the 40mm focal lenth on 24x36mm. See the following detail of the Montbretia blossoms – here again the rightmost blossom with stamens is exactly in the focal plane. The structueres are recorded here even with higher smootheness and plasticity, which is the advantage of the 100 MP sensor, an excelent algorithm and a very good lens as well, which resolves up to 5.051 LP/PH (at f5.6) in the center!


Bild 8 / picture 8: Detail of same scene with Fujinon 50mm f3.5 on Fujifilm GFX100 at the same distance of 0.9 meters. (height: 1439 pixel)



Die Rand-/Ecken-Auflösung historischer SLR-Objektive – Teil 1 (Test-Targets)

Beim „Neustart“ der Foto-Objektiv-Produktion direkt nach dem 2. Weltkrieg lag die Rand-/Ecken-Auflösung typischer Objektive für das Kleinbildformat im Bereich von 300 … 400 … 500…600 Linienpaaren je Bildhöhe von 24 mm (entsprechend ca. 25 … 32 … 40 … 50 Linien/mm), während  diese Objektive in der Bildmitte (auch bei Offenblende) über 3.000 LP/PH liefern können. Bei den damals neuen Retrofokus-Weitwinkelobjektiven konnten bei offener Blende die Auflösungswerte in den Ecken auch bei 200 LP/PH oder darunter liegen (entspr. 17 Linien/mm).

Das sind nüchterne Zahlen – der Fotograf „denkt“ aber in Bildstrukturen! Ihn interessiert, was er SIEHT.

Was bedeutet dieser Auflösungsabfall von der Bildmitte zu Rand/Ecke für die praktische Fotografie?

Zunächst möchte ich dieser Frage an reproduzuierbar verfügbaren ebenen Bildstrukturen in einem Testbild für Auflösungsmessungen nachgehen, in dem man außer dem allgemeinen Schärfeeindruck auch Erscheinungen wie (Rest-)Astigmatismus und Farbfehler beurteilen kann.

40 L/mm am Rand galten bei Fotoobjektiven der 1950/60er Jahre bereits als „sehr gut“. In den 50er Jahren erreichten Objektive nach den Stand der Technik am Rand ganz selten Werte über 50 … 60 Linien/mm nach den damaligen Tests auf üblichen, feinkörnigem und normal bildgebenden Filmemulsionen, wie sie auch vom Normal-Fotografen verwendet wurden. In der Bildmitte gemessen erreichte die „analoge“ Kombination Objektiv/Film selten Werte oberhalb 90 L/mm.  Auf Spezial-Platten mit hoch-auflösenden Emulsionen – ausgewertet unter dem Mikroskop – konnte man aber auch damals durchaus bis zu 500 Linien/mm messen, was „digital“ 6.000 LP/BH entsprechen würde.

Der Bild-Sensor in der hier verwendeten  Sony A7Rm4 erreicht 3.168 LP/mm (60,3 MP).

Schon in den ersten 25 Jahren des 20.Jh. konnte mit den ausgereiften Anastigmaten in der Bildmitte („axial“) praktisch „beliebig hohe“ Auflösungen erreicht werden und es standen dafür auch geeignete Glassorten zur Verfügung. Man betrachte die mit IMATEST ermittelte Auflösungskurve (über dem Bildradius aufgetragen) des 1923er Ernostar 100mm f2.0 bei nahezu voller Öffnung (f2.8) an der 60MP-Sony-Kamera:

Bild 1: Kantenprofil, MTF-Kurve in der Bildmitte und Auflösung (LP/BH) über Bildfeld des Ernostar 100 f2.0 bei Blende 2.8

Es ist ein 4-Linser mit vier einzel stehenden Linsen – ohne Vergütung! Dafür erscheint Kantenprofil und MTF-Kurve sehr gut. Aber die Auflösungskurve über dem Abstand von der Bildmitte (100% auf der Abszisse entsprechen einem Bildkreis von 21,5mm Radius!) zeigt einen beängstigenden „Absturz“ von über 2.600 LP/BH auf ca. 300 LP/PH an Rand/Ecken!

Hier die Situation dreißig Jahre später – dazwischen liegt der 2. Weltkrieg:

Bild 2: Angénieux 90mm f2.5 von 1951  – Auflösung Rand/Ecken liegt bei 400/600 LP/PH – bei f2,5 – immerhin leicht verbessert

Die deutlich größere Verbesserung gegenüber dem Ernostar zeigt sich erst abgeblendet:

Bild 3: Ernostar 100f2.0 (links) und Angénieux 90f2.5 (rechts), jeweils abgeblendet auf Blende 11 (optimale Blende)

zwar hat sich das Ernostar noch einmal auf olympische 3.000 LP/PH in der Mitte gesteigert (was 93% der Nyquist-Frequenz der verwendeten Kamera entspricht!) aber am Rand bleibt es bei 700-800 LP/PH (allerdings: immerhin verdoppelt).

Das Angénieux 90mm f2,5 erreicht nun aber über die gesamte Bildfläche gemittelt 2.789 LP/PH.

Machen wir noch einmal einen Sprung 30 Jahre weiter in das Jahr 1987. Die Entwicklung neuer, leistungsfähiger Glastypen hat nun weltweit neue Voraussetzungen geschaffen und war die Voraussetzung für das folgende typische Ergebnis am Beispiel einer anderen Optik-Legende:

Bild 4: Leitz Apo-Macro-Elmarit 100mm f2.8 volle Öffnung Blende 2.8 – die extrem nach unten streuenden Messpunkte im rechten Bild stammen von der linken-unteren Ecke des Bildes, in der die Auflösung lokal dramatisch abfällt – die Ursache kenne ich nicht (ein Leitz Apo sollte eigentlich keinen so großen Zentrierfehler haben…).

Dank der neuen Gläser ist das Apo-Macro-Elmarit nun „offenblendentauglich“ – obwohl Kantenprofil und MTF-Kurve in der Bildmitte sehr ähnlich den Kurven des über 60 Jahre älteren Ernostar 100mm f2,0 sind! Abgeblendet, bei optimaler Blende (5,6) ist der Mittelwert der Auflösung über das gesamte Bildfeld des Apo-Macro-Elmarit (2.907) dann gerade mal 120 LP/PH höher als der Wert des „ollen“ Angénieux – und die Maximal-Auflösung des Apo-Macro-Elmarit in der Bildmitte ist abgeblendet nicht höher als beim Ernostar ….

Noch eine für seine Entstehungszeit sehr bemerkenswerte Eigenschaft des Angénieux 90mm f2.5 sticht hervor – der sehr niedrige Farb-Fehler (CA):

Angén90f2,5_f11+Apo-Macro-Elmarit100f2,8_Radial_Vgl Kopie
 Bild 5: Achtung: unterschiedliche Nullpunktlage und Maßstäbe in den Ordinaten!

Auf sehr geringen Niveau ähnlich Apo-Macro-Elmarit bei blau, dreifach so groß bei rot! Aber immer noch ein Drittel vom Contarex-Sonnar 85mm – zehn Jahre später. Einen Kompromiss musste Angénieux aber seinerzeit offensichtlich eingehen, um das zu erreichen: eine relativ hohe Verzeichnung von -1,2% gegenüber +0,4 beim Ernostar und +0,17 beim Apo-Macro-Elmarit.

Man kann also sagen:

der Fortschritt in der optischen Technologie lieferte für die Foto-Objektive überwiegend verbesserte Randauflösung bei Offenblende bei gleichzeitig verbesserter Farbkorrektur, Verzeichnung und erhöhtem Kontrast und verbesserter Streulichtresistenz bei niedrigen Frequenzen – letzteres nicht zuletzt durch die dramatisch verbesserte Beschichtungs-Technologie.

In diesem Link finden Sie Vergleiche des Angénieux 90mm mit weiteren Objektiven über den gesamten Zeitraum 1923 – 2015.

Ich schließe aus meinen vielen Messungen an historischen Objektiven aller Epochen, dass man ab Anfang der 1970er Jahre, den extremen Randabfall der Objektive bei Offenblende schrittweise reduzieren konnte – bereits 1977 gibt es ein Beispiel eines quasi „Ideal-Objektivs“ im Bereich Kurztele (Porträt): das VivitarSerie1 90mm f2,5 Macro! (Mit Einschränkung bei der Streulichtfestigkeit…)

Bei wesentlich größeren Bildwinkeln war das natürlich wesentlich schwieriger und gelang bei Weitwinkelobjektiven entsprechend später mit immer höher- und niedriger-brechenden Gläsern – und im Extremfall (großer Bildwinkel und hohe Lichtstärke) zuletzt erst mit dem Einsatz asphärischer Linsen.

Was bedeuten aber nun die niedrigen Rand-Ecken-Auflösungen bei den frühen historischen Optiken in den Bildstrukturen?

Fangen wir mit einer reproduzierbar beleuchteten, ebenen Objekt-Situation an, in der wir auch diese Auflösungswerte messen: dem detailreichen Test-Chart, das wir abfotografieren. Die Beschreibung der Testmethode finden Sie in diesem Link.

Das ist das Test-Bild, hier durch das Angénieux 90mm f2.5 bei voller Öffnung fotografiert.

Bild 6: Imatest-Test-Chart SFRplus, fotografiert im Kleinbild-Format 3:2

Der Abstand zwischen den oberen und unteren schwarzen Balken ist 783 mm im Original.

Die Analyse-Software von IMATEST verwendet übrigens nicht die kleinen Rosetten, die in die dunklen Quadrate eingebettet sind, sondern die Seitenkante der Quadrate, die um 5.71° VERDREHT sind. Mehr erfahren Sie in dem oben aufgeführten Link.

Das Übersichts-Bild soll Ihnen ein Gefühl davon vermitteln, wie fein die Rosetten-Details sind, wenn man ein Bild im normalen Betrachtungsabstand ansieht.

Hier das Detail eines Quadrates mit Rosette in einer Größe, die der Betrachtung des mit der 60MP-Kamera aufgenommenen Bildes bei „100%-Betrachtungsmaßstab“ entsprechen würde (d.h. 1 Bildschirmpixel entspricht 1 Kamerapixel) – wenn Sie das Quadrat auf Ihrem Bildschirm mit ca. 22cm Kantenlänge sehen.

Dies ist das Quadrat genau im Zentrum:

Bild 7: Zentrales Target-Quadrat, 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – laut Analyse beträgt die Auflösung des Objektivs hier 2.500 – 2.700 LP/PH (sagittal/meridional) – 100%-Ansicht bei 60 MP!

Folgend nun der entsprechende Ausschnitt in der oberen-rechten Ecke (wegen der sichtbaren Verzeichnung von -1,2% sind die Qadrate in der Mitte und in der Ecke nicht genau gleich groß!):

Bild 8: Target Nr.3 (obere rechte Ecke),, 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – laut Analyse beträgt die Auflösung des Objektivs hier im Mittel 560 LP/PH 

Die Vignettierung (im Mittel über alle Ecken 2 f-stops) hat hier natürlich noch einen bedeutenden Einfluss auf das visuelle Betrachtungsergebnis! Es fällt allerdings sofort auf, dass trotz der hohen Vergrößerung fast keine Farbsäume zu sehen sind – allenfalls ein sehr kleiner roter Schimmer, wie vom CA-Diagramm zu erwarten ist.

Das folgende Bild zeigt dasselbe Detail, auf das ich nun die Vignettierungs-Korrektur von ca. zwei Blendenwerten angewendet habe, wie man Sie mit Photoshop oder als kamerainterne Korrekturmaßnahme durführen könnte:

Bild 9: Target Nr.3 (obere rechte Ecke), 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – Vignettierung kompensiert. Meridional ca. 400, sagittal ca. 600 LP/PH

Hier erkennt man drei Dinge:

  1. Die 560 LP/PH-Auflösung liefern tatsächlich noch klare Bildstrukturen – wenn auch „weicher“
  2. Die Farbreinheit der Abbildung bestätigt sich – allerdings erkennt man einen leichten generellen Gelbstich hier in der Bildecke
  3. Man erkennt sogar den Unterschied zwischen ca. 400 LP (meridional) und ca. 600 LP (sagittal) in den Rosetten-Details: die Ringe sind in der Bild-Diagonale von links oben nach rechts unten erkennbar „kantenschärfer“!

Die Struktur ist „weicher“ wiedergegeben – aber dennoch deutlich und mit gutem Kontrast sichtbar.

Beachten Sie bei diesen Bildern bitte: es handelt sich um die 100%-Darstellung des 60 MP-Bildes!

Anmerkung: In Imatest-Diagrammen wird der angelsächsischen Nomenklatur folgend „meridional“ meist als „tangential“ bezeichnet (tangential = meridional) diese Kuven sind durchgehend gezeichnet, die sagittale Auflösungskurve gestrichelt.  In MTF-Diagrammen der Fa. Zeiss ist die Zuordnung umgekehrt: gestrichelt meridional und durchgezogen für sagittal

Kritischer ist diese Situation bei Weitwinkel-Objektiven, bei denen Farblängsfehler und Astigmatismus an Rändern und Ecken eine deutlich größere Rolle (wegen der viel größeren off-axis-Winkeln) spielen.

Wir betrachten das folgend an von 24/25mm-Retrofokus-Objektiven „der ersten Stunde“ (1957/71):

Angénieux wahrte seinen zeitlichen Vorsprung konsequent und brachte seine „Retrofocus“-Weitwinkel-Brennweiten in schneller Folge auf den Markt: 35mm f2.5 in 1950 (6-Linser) vorgestellt und in kleinen Mengen geliefert (ab 1953 Großserie!), 28mm f3.5 (6-Linser) ebenfalls ab 1953, 24mm f3.5 (8-Linser) ab 1957. (Besonderheit: danach wurde von Angénieux niemals wieder eine Neuberechnung dieser FotoB-Optiken herausgebracht sondern diese Optiken bis 1971 unverändert geliefert und das Segment der Festbrennweiten dann völlig eingestellt.

Bei diesen frühen Weitwinkel-Objektiven ist bei Offenblende die Auflösung noch deutlich niedriger als bei dem 90er Objektiv. Bei dem Angénieux Retrofocus 24mm f3.5  liegt die Auflösung in den Ecken bei 310-354 LP/PH (sagittal) und  ca. 600 LP/PH (meridional) bei den Einzelwerten – der Ecken-Mittelwert beträgt 328 LP/PH:

Bild 10: Angénieux 24mm f3.5 bei Offenblende – Auflösung über Bildfeld der sagittalen Strahlenbündel

Sehen wir uns das Target Nr.5 in der rechten unteren Ecke an (sagittal mit 345 LP/PH gemessen – meridional mit 560 LP/PH):

#Target RU_Angén24f3,5_f3,5
Bild 11: Angénieux 24mm f3.5 bei Offenblende f3.5 – Target Nr. 5 – rechte untere Ecke (Vignettierung kompensiert) – sagittal 345 LP/PH – meridional 560 LP/PH


Trotz der deutlichen Rest-Fehler ist die Struktur noch deutlich erkennbar, wenn auch richtungsabhängig. Der sagittale Wert entspricht 29 L/mm. Die visuelle Auswirkung des Farbfehlers ist – trotz des hohen CA von 8 Pixel! – auf die Farbsäume begrenzt.

Das Nachbar-Target (Nr. 21) links davon hat 500 LP/PH sagittal und 502 LP/BH meridional – also frei von Astigmatismus, aber mit CA von ca. 4,5 Pixeln:

Bild 12: Angénieux 24mm f3.5 bei Offenblende f3.5 – Target Nr. 21 – links von der rechten unteren Ecke (Vignettierung kompensiert) – sagittal 500 LP/PH – meridional 502 LP/PH

Folgend sehen wir das entsprechende Auflösungs-Diagramm des Zeiss Jena Flektogon 25mm f4.0 (1959):

Bild 13: Flektogon 25mm f4.0 bei Offenblende – Auflösung über Bildfeld der sagittalen Strahlenbündel

Angesichts des in den Ecken „noch“ bei 301 LP/PH liegenden Mittelwertes (gilt für sagittale und meridionale Strahlen) liegen hier die sagittalen Einzelwerte Rand/Ecken bei erschreckend niedrigen 104 – 222 LP/PH.

Sehen wir uns den Linken Rand (Mitte) mit sagittal 222 LP/PH / meridional 610 LP/PH an (Target-Nr.10):

#Target LRmitte10_corr_Flektogon25f4,0_f4,0
Bild 14: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 10 – linker Rand, Mitte (Vignettierung kompensiert) – sagittal 222 LP/PH – meridional 610 LP/PH

Hier ist die Struktur schon sehr weich aber deutlich zu erkennen – kräftiger Rest-Astigmatismus, aber sehr geringer Farbfehler. Es ist schwer zu sagen, wie diese Situation analog auf Film gemessen worden wäre: 222 LP/PH entsprächen 18,5 Linien/mm… das wäre wohl nicht mehr als gut bewertet worden.

Nur wenige mm weiter nach außen am Target 17 (rechter Rand ein Taget nach unten) liegt die Auflösung bei sagittal 160 LP/PH und meridional bei 591 LP/PH:

Bild 15: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 17 – rechter Rand, eins unter Mitte (Vignettierung kompensiert) – sagittal 160 LP/PH – meridional 591 LP/PH

Hier bricht im sagittalen Sektor der Struktur der Kontrast endgültig ein – fast schon verschwommen und man erkennt, dass noch weiter rechts am äußersten Rand (es fehlen noch 4mm bis zum Rand) der Kontrast noch einmal dramatisch absinken wird.

In der Ecke oben rechts (Target Nr. 3) mit 104 LP/PH sagittal, 338 LP/PH meridional:

Bild 16: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 3 – Ecke oben rechts (Vignettierung kompensiert) – sagittal 104 LP/PH – meridional 338 LP/PH

Man kann die Struktur nur noch erahnen – die extrem niedrige sagittale Auflösung und der hohe Rest-Astigmatismus lösen die Bildstruktur auf – obwohl die Chromatische Aberration mit ca. 1,6 Pixel nur ein Fünftel der CA bei dem Angénieux 24mm in der Ecke ist.

Betrachten wir im direkten Vergleich das entsprechende Objektiv von Zeiss-West, das 3 Jahre später heraus kam und eine Blende lichtstärker ist – Distagon 25mm f2.8 (für die Contarex 1961):

Bild 17:

Auch hier liegen die sagittalen Werte am Rand bei Offenblende f2.8 unter 200 LP/PH.

Ich zeige folgend die beiden Targets Nr.10 (linker Rand, mitte)  und Nr.5 (rechte untere Ecke):

Bild 18: Zeiss Distagon 25mm f2.8 bei Offenblende Target 10 (linker Rand mitte) – Vignettierung korrigiert

Hier beginnt bei sagittal 195 LP/PH die Bilddefinition sich durch eine Kombination eines starken Rest-Astigmatismus (meridionaler Wert: 917 LP/PH) und des Farbfehlers aufzulösen – der Kontrast ist schwach.

Bild 19: Zeiss Distagon 25mm f2.8 bei Offenblende Target 5 (rechte untere Ecke) – Vignettierung korrigiert

In der Ecke sagittal 185 LP/PH mit starkem Rest-Astigmatismus findet sich nur noch in einem sehr schmalen meridionalen Sektor eine klar definierte Struktur (mit 379 LP/PH) mit niedrigem Kontrast.

In dieser Gruppe der FRÜHEN Retrofocus-Objektive mit 24 oder 25 mm Brennweite (Angénieux, Carl Zeiss Jena Flektogon und Zeiss-Ikon Distagon) gibt es ein viertes (1959) aus Japan: Topcon Topcor 2,5cm f3.5, das unter diesen Optiken herausragt:

Bild 20: Topcor 2,5cm f3.5 – sagittale Auflösung bei Offenblende im gesamten Bildfeld (443 … 618 LP/BH)

Der Mittelwert der (sagittalen und meridionalen) Rand-/Ecken-Auflösungswerte beträgt hier 683 LP/PH. Das folgende Bild zeigt die Struktur von Target Nr.5 in der rechten unteren Ecke:

Bild 21: Topcor 2,5cm f3.5 bei Offenblende, Target Nr.5  – untere rechte Ecke bei sagittal 587 LP/PH (meridional 914 LP/PH) – also mit mäßigem Rest-Astimatismus – Vignettierung korrigiert

Bei diesem Auflösungs-Niveau  (mit mäßigem Astigmatismus und geringem Farbfehler (CA-Wert in der Ecke 1,5 Pixel!) liegt nun eine klare Bildstruktur vor – nur deutlich weicher als im Bildzentrum.

Dieses Objektiv ragt damit in der Bildqualität deutlich aus dem Feld der zeitgenössischen „Superweitwinkel“ zwischen 1957 und 1961 hervor.

Sehen wir uns noch den nächsten Qualitäts-Schritt am Beispiel des Minolta MD W-Rokkor 24mm f2.8 an:

Minolta MD W-Rokkor 24mm f2.8 Offenblende f2.8 – Target Nr.5 (untere rechte Ecke) – CA mit 3 Pixel deutlicher als beim Topcor – Vignettierung korrigiert

Der Kontrast liegt hier deutlich höher mit einem Durchschnittswert der Auflösung Rand/Ecken von 1002 LP/PH.

Schließlich die gegenwärtige moderne Referenz – das Zeiss Distagon 25mm f2.0:

Bild 23: Zeiss Distagon 24mm f2.0 Offenblende f2.0  –  Target Nr.3 (obere rechte Ecke) – sagittal 1.206 , meridional 1.897 LP/PH und CA von 0.5 Pixeln

Das Objektiv ist mit der Auflösung bei Blende 2.0 in der Ecke mit durchschnittlich 1.517 LP/PH visuell kaum noch von der Bildmitte zu unterscheiden (Vignettierung auch hier korrigiert!).

Man sieht an diesen Beispielen deutlich, dass außer dem meßtechnischen Wert der Auflösung die Rest-Bildfehler die visuelle Wirkung wesentlich mit beeinflusst. Wobei man den Eindruck hat, dass ein größerer Farbfehler sich ggf. weniger zerstörerisch auf den Bildkontrast auswirkt als ein starker Rest-Astigmatismus.

Man sieht, dass 200-300 LP/PH als Untergrenze einer bildgebend noch brauchbaren Auflösung gelten können (s. Bild 14), wenn Rest-Astigmatismus und Farbfehler im mäßigen Grenzen bleiben. Der absolute Auflösungswert entscheidet in diesem Bereich allerdings nicht alleine über das bildliche Ergebnis. Genauso entscheidend ist der Korrekturzustand – also die anwesenden Rest-Linsen-Fehler. Allgemein sind diese historischen Objektive in der Rand-/Ecken-Auflösung ab ca. 400 – 600 LP/PH als gut zu bezeichnen (s. Bilder 11, 12 und 21) – mit gewissen Abstrichen beim Kontrast.

Ab Anfang der 1970er Jahre werden Auflösungs-Werte in den Ecken um 1.000 LP/PH bei Offenblende auch bei Weitwinkelobjektiven erreicht, womit zumindest in der Analog-Fotografie hervorragende Ergebnsise möglich waren.

Moderne Objektive erreichen dank asphärischer Linsenflächen hervorragend ausgegleichene Ergebnsise auch bei Offenblende über das gesamte Bildfeld – auch bei sehr großen Bildwinkeln (s. Bild 23).

Copyright Fotosaurier, Herbert Börger, Berlin, 14. März 2020










Die Qualität historischer Angénieux Foto-Objektive – 1. Festbrennweiten 1a. Porträt-Teleobjektiv 90mm f2.5

Autor: fotosaurier, Berlin, 13. Februar 2020

Dieses Objektiv wurde ab 1951 (oder 1954 … verschiedene Angaben) ausgeliefert.

Angénieux 90mm f2.5 in ALPA-Fassung – Modell Y12 (vier einzelne Linsen)

Für alle, die den Namen Angénieux kennen, gehören diese Objektive zu den legendären historischen Foto-Produkten, die nicht nur zeitgenössisch an der Spitze lagen sondern auch führend und innovativ gegenüber dem Wettbewerb einzustufen waren.

Über Pierre Angénieux und die Firma können sie hier meinen Überblick-Artikel lesen:

Soweit das Vorurteil! … aber stimmt das auch? – und was kann man davon anhand von 50-70 Jahre alten gebrauchten Objektiven heute noch feststellen?

Alle Objektive, die ich hier untersuche, besitze ich. Ich will hier nicht mit meinen Testbedingungen langweilen sondern habe das Thema in einen eigenen Artikel „ausgelagert“. Im Prinzip und kurz umrissen: ich fotografiere mit den Objektiven , die ich an die jeweilige Digitalkamera (Sony A7Rm4 oder Fujifilm GFX100 im 35mm-Modus – beide ca. 60 MP) adaptiere, eine Original-IMATEST-Chart (SFRplus) unter möglichst kontrollierten Bedingungen ab und analysiere sie mit der IMATEST-Software. Mehr dazu unter diesem Link.

Als optische Qualitätsmerkmale ziehe ich heran:

  1. MTF-Kurve (MTF-Wert über Frequenz)
  2. Radiale MTF-Verteilung (MTF30-Auflösung über Abstand von der Bildmitte)
  3. Mittlerer, gewichteter Wert MTF20/MTF30/MTF50 (über gesamte Bildfläche)
  4. Kantenprofil und CA (Bildmitte, lokal)
  5. Chromatic Aberration R-G, B-G radial über die gesamte Bildfläche (nur in ausgewählten Fällen)

Als Auflösungswert benutze ich grundsätzlich Linienpaare per Bildhöhe (LP/PH). Die Bildhöhe ist hier immer 24 mm (Querformat). Nach meinen Erfahrungen ergeben die Auflösungswerte der MTF30 den realistischsten Vergleichswert für die allgemeine bildliche Fotografie.

Mein persönliches Interesse liegt dabei hierauf:

  1. welche optischen Leistungen besitzt ein historisches Objektiv?
  2. wie liegt diese im Vergleich zu zeitgenössischen anderen Objektiven?
  3. wie sieht der Vergleich zu den neueren und modernsten Optiken von heute aus?

Auf die Problematik, dass man da bis zu 100 Jahre alte, gebrauchte Objektive gegebenenfalls fabrikneuen, modernen gegenüber stellt, gehe ich in meinem Beitrag zu meinen Testmethoden näher ein. (Nobody’s perfect!)

Ich erstelle diese Testergebnisse bei allen Blenden (bis max. f16) und stelle hier im Vergleich die Auflösung in der gesamten Bildebene für die jeweilsoptimalen Blende“ dar – die natürlich zwangsläufig einen Kompromiss aus verschiedenen Eigenschaften darstellt. Im Laufe der Optik-Geschichte hat sich die für die Auflösung (und deren Konstanz über die Bildebene!) günstigste Blende ständig weiter zu größerer Blendenöffnung (kleinere WERTE) verschoben. Die ältesten Objektive (bis ca. 1965) wurden beim Abblenden meist bis zu Blende 11 immer besser in der Auflösung und Kontrast – in Ausnahmen noch weiter. Allerdings war die „Kantenschärfe“ auch damals meistens schon optimal bei Blende 5,6. Bis in die 80er Jahre liefert dann Blende 8 die beste Auflösung – später Blende 5,6. Heutige (meist asphärische) Optiken können schon bei Blende 2,8 bis 4,0 ihre höchste Auflösung erreichen. Dies habe ich hier berücksichtig und die Test-Blende entsprechend gewählt.

In der linken Spalte jeweils die Auflösung (Linienpaare/Bildhöhe – LP/PH bei MTF30, also dem MTF-Wert bei 30% Kontrast!) über der Distanz von Bildmitte (0)  bis zur Bildecke (100). Die Nyquist-Frequenz des Sensors entspricht stets der Wert 3168 LP/PH (Linien-Paare, nicht Linien!). Zusätzlich zur Auflösungskurve ist die Auflösung bei MTF30 getrennt für tangentiale und sagittale Strukturen als „gewichtetes Mittel“ über die ganze Bildfläche angegeben.

Verwendet wurden handelsübliche Adapter an den Sony-E-Mount – diese sind vielleicht die größte (mechanische) Fehlerquelle innerhalb dieser Tests.

—> Hinweis: Diese Untersuchungen an älteren und gebrauchten historischen Objektiven liefert Messergebnise für das Auflösungsvermögen, Verzeichnung und Chromatische Aberrationen der jeweiligen Objektive unter reproduzierbaren und kontrollierten Beleuchtungsverhältnissen (genormte, reflexfrei beleuchtete Chart). Das bedeutet nicht, das das jeweilige Objektiv unter allen denkbaren REALEN Lichtverhältnissen an der Digitalkamera entsprechend hochwertige Bildergebnisse erzielt – besonders im Gegenlicht können Streulicht und andere unangenehme Effekte auftreten, die bei jedem Digitalsensor unterschiedlich sein können!

Kamera ist hier die Sony A7RMark4 mit 60 MP.

Ich beginne mit meinem ältesten Nachkriegsobjektiv (die Retrofocus-Objektive und die Zooms werden in jeweils eigenen Artikeln besprochen werden):

Angénieux Porträt-Tele 90mm f2,5 von 1951 (Alpa-Anschluß): es ist, wie die meisten der Vergleichsobjektive (Ausnahme Kinoptik und Apo-Macro-Elmarit), auch ein Ernostar-Typ (vier freistehende Linsen) – die Sonnare sind ja auch ein (ebenfalls von Bertele) weiterentwickeltes Ernostar… und das  Olympus sehe ich als eine Art „Hybrid“ aus Gauss-Typ und Sonnar.

Dagegen gestellt:

  1. Ur-Ernostar 100mm f2,0 (1923)
  2. Kinoptik Apo 100mm f2,0 (ca. 1950)
  3. Canon Rangefinder (M39) P 85mm f1,8 (1960)
  4. Zeiss Sonnar 85mm f2,0 (Contarex 1961)
  5. Vivitar Serie1 90mm f2,5 Macro (ca. 1977)
  6. Leitz Apo-Makro Elmarit 100mm f2,8 (1987)
  7. Zeiss Sonnar für Contax G 90mm f2,8 (1994)
  8. Leica M Apo-Summicron ASPH 90mm f2,0 (1998)
  9. State-of-the-art: Sony GM 85mm f1,4 (Spiegellos, E-Mount, 2018)

Sorry – das sind eine Menge Daten – und es sind einige „LEGENDEN“ darunter! Wichtig war mir, die beiden „Rangefinder“-Optiken (Canon M39 und Leica M) mit einzustreuen, da ja eine weitere Legende lautet: Messsucher-Kamera-Objektive sind grundsätzlich besser als die SLR-Optiken…

Für die, denen „Contax G“ kein Begriff ist: Eine geniale, späte (und sehr schöne!) Messsucher-Kamera von Kyocera die (1994!) mit Autofokus ausgestattet war – einige der Objektive dazu gehören zu den besten, die je gebaut wurden – und sogar ein Hologon 16mm wurde dieser Kamera spendiert (eine eigene Legende). Aber Biogon 21mm und Hologon 16mm sind an Digitalsensoren nicht brauchbar (zu kurzer Abstand der letzten Linse zum Sensor – zu flacher Strahleneinfall).

Hier die von mir gemessenen Auflösungsdaten dieser Optiken in einer Tabelle:


Angénieux90 und Co Auflösungsvergleich
Auflösungs-Vergleich Angénieux 90f2,5 mit zeitgenössichen,  jüngeren und älteren Optiken

Wie schon erwähnt sind die MFT30-Auflösungswerte in der Hauptspalte 4 ein gewichtetes Mittel über die gesamte Bildfläche! (Zentrum Gewicht 1, Übergang Gewicht 0.5, Ecken Gewicht 0.25). Angegeben sind bei jedem Objektiv die Werte für Offenblende und die optimale Blende (bei den ältesten und auch beim Angénieux sind das Blende 11, je jünger die Optik, desto weiter geöffnet wird das Optimum erreicht!). Siehe auch Artikel über das Testverfahren.

Da es bei älteren Optiken erheblichen Randabfall der Auflösung gibt, habe ich die Mittelwerte NUR für das Bild-Zentrum und NUR für alle Bild-Ecken (ohne Gewichtungsfaktor!) hinzugefügt (Spalten 5 + 6).

Wenn ein Objektiv nicht perfekt zentriert ist, können am Rand oder in ein oder zwei Ecken ziemlich niedrige Werte auftreten – diese sind in die Mittelwerten hier mit eingegangen – die ziehen also das Gesamtergebnis deutlich RUNTER!

Beruhigend für mich war, dass das modernste Objektiv, das auch noch vom Hersteller für genau diesen Sensor entwickelt wurde (Sony GM 85f1,4) tatsächlich – und schon bei f4,0 – das Beste ist und der Mittelwert bei 98% der Nyquist-Frequenz der 60 MP-Kamera liegt – wofür hätte ich sonst das viele Geld hingelegt? (…auch ist das Objektiv im Zustand ja praktischt neu und wird ohne Adapter benutzt!)

Aber nun zu unserem Kandidaten Angénieux 90mm f2,5:

Der Veteran, der ja bis zu 69 Jahre alt sein könnte, mit Gebrauchsspuren, Putzspuren, Staub in der Optik und einer der ersten „Nachkriegsvergütungen“, erreich im Maximum (f11) einen Mittelwert von 85% Nyquistfrequenz über die gesamte Bildfläche (2.708 LP/BH) und in der von mir gewählten Vergleichsgruppe (praktisch alles Optik-LEGENDEN!) dauert es 26 Jahre, bis ein 90er Objektiv erscheint (VivitarSerie1 90f2,5), das das Angénieux in der Maximalauflösung übertrifft. Das zehn jahre später (1961) herausgekommene Zeiss Sonnar 85mm f2.0 zur Contarex ist in der Auflösung nicht besser – bei Offenblende f2.0 zeigt es eine Schwäche in der MTF-Kurve, die bei sehr niedrigen Frequenzen (links im Diagramm) relativ steil abfällt. Nach dem VivitarSerie1 gibt es in meiner Sammlung erst 40 Jahre später ein Objektiv, das dieses übertrifft! (Das Apo-Makro-Elmarit 100 übertrifft es nur bei Offenblende.)

Die größten Fortschritte in der Foto-Optik wurden seit den 1950er Jahren ganz offensichtlich in der Offenblenden-Auflösung und dem Randabfall (bei niedrigen Blenden) gemacht.

Im Anhang kann man Messkurven  einiger der Objektive ansehen.

Hier die Darstellung der einzelnen Messpunkte bei der optimalen Blende (f11) am Angénieux 90mm. Hier sind die Auflösungswerte am Rand durchgängig (und sehr symmetrisch) etwas höher als in der Mitte:


Ich habe das neu fokussiert überprüft – offensichtlich ist es kein Zufall sondern in der Schärfe-Ebene tatsächlich reproduzierbar.

Eines der Meßergebnisse am Angénieux 90mmf2,5 ist aber in hohem Maße überraschend für ein Objektiv jener Zeit: die Chromatische Aberration (Farbfehler). IMATEST unterscheidet nicht zwischen Längs- und Quer-Farbfehler sondern misst den in der Bildebene auftretenden visuellen Farbfehler. (Das Apo-Kinoptik kann da nicht im Entferntesten mit halten – es hat einen 20-fach größeren Farbfehler als das Angénieux…)

Hier Vergleichsdiagramme für sechs dieser Optiken (1951 und jünger): das zeitgenössische Contarex-Sonnar hat einen ca. 2,5-fach größeren Farbfehler, das nagelneue SonyGM ist graduell besser .. hier ist allerdings die eigentliche Sensation das VivitarSerie1 mit Farbfehlern nahe Null! Achtung: die Ordinaten-Maßstäbe in den Grafiken sind leider nicht gleich… bitte links auf die vetikale Achse schauen!





Angesichts der guten Auflösungsergebnisse auch über das ganze Bildfeld und der extrem guten CA (nicht nur für diese Zeit) war das Angénieux ein herausragendes optisches Produkt. Die optischen Berechnungsmethoden, die Angénieux während des Weltkrieges entwickelt hatte, sollen ja (manuell!) 10-fach zeitlich effektiver gewesen sein, d.h. dort konnte man in gleicher Zeit 10-mal mehr Varianten berechenen, um die beste Lösung zu finden! Das vorliegende Ergebnis widerspricht dem nicht… Das Modell wurde bis 1968 geliefert (für Alpa alleine – in Fassung „E4“ – wurden 1.500 Stück gebaut). Der Kompromiss, den Angénieux machte, um diese exzellenten Leistungen zu erzielen, lag offensichtlich darin, dass er -1,0% Verzeichnung zuließ! Für ein Portrait-Objektiv kein wirklich großes Problem.

Das Angénieux 90mm f2.5 für Alpa (daher die Alpa-interne-Bezeichnung „Alfitar„) ist der zweite Typ mit 90mm Brennweite: Typ Y12. Es ist ein Vierlinser – 4 freistehende Linsen, Ernostar/Sonnar-Typ – mit einer Nachkriegs-Einschicht-Vergütung. Die Verarbeitung (Voll-Metall-Fassung, vernickelt) ist olympisch und auf ewige Haltbarkeit ausgerichtet. Die Glasflächen meines Exemplars entsprechen im Zustand natürlich dem Alter von fast 70 Jahren – aber gut gepflegt, wenig Putzspuren, kein Schleier.

Gegenüber gestellt sind in der Auflösungs-Tabelle und in Kurven im Anhang (s. unten)  andere Legenden der Foto-Optik im zeitlichen Abstand von jeweils 7 – 20 Jahren bis hin zum State-of-the-Art-Boliden von Sony (2018), der 11 Linsen und Nanobeschichtung (und 11 Blendenlamellen) hat!

Wenn man sich die Auflösungsmessungen an guten Optiken der letzten 100 Jahre ansieht, dann stellt man fest, dass die axiale Auflösungsleistung (Bildmitte)  praktisch auch mit manueller Berechnung  (bis Ende der 1950er Jahre) fast „beliebig“ gut sein konnte – jedenfalls höher als jede analoge Filmemulsion (für normale bildnerische Zwecke) sie jemals ausnutzen konnte. Bei dem fast hundert Jahre alten Ernostar 100mm f2.0 erreicht bei Offenblende die Auflösung in der Mitte bereits die Nyquist-Frequenz der 42 MP Sony A7Rm2.

Der technische Fortschritt in den Linsenkonstruktionen durch neue Gläser und Asphären (bei großen Aufnahmeentfernungen!) drückt sich bezüglich der Auflösung weitgehend an den Rändern und in den Bildecken des Formates vor allem bei Offenblende aus, aber auch darin, dass die optimale Auflösung bei deutlich offenerer Blende erreicht wird. Aber Auflösung ist nicht alles!

Der Fortschritt in der Optik wirkt sich auch in Bezug auf höheren Kontrast bei den niedrigen Frequenzen über die ganze Bildfläche aus. (Zum letzteren trägt erheblich auch die immer raffiniertere Vergütung der Glas-Luft-Flächen bei.) Diese Kontrasterhöhung im niedrigen Frequenzbereich läßt die Bilder „knackiger“ aussehen. In den MTF-Kurven wird dieser Umstand sichtbar dadurch, dass die Kurve nicht von Frequenz Null (Kontrast = 1 ) linear bis zur Nyquist-Frequenz abfällt, sondern DEUTLICH darüber bleibt – sichtbar als „Bauch nach oben“ zwischen 0 und 2000 LP/PH. Moderne Objektive haben in diesem Bereich einen mehr oder weniger langen HORIZONTAL verlaufenden Bereich der MTF-Kurve, der sogar noch über den Wert 1 nach oben gewölbt sein kann (siehe Sony GM 85mm und Apo-Summicron-M 90mm bei Blende 5,6 im Diagramm ganz unten). Das Angénieux 90mm f2.5 besitzt einen sehr ausgewogenen MTF-Kurvenverlauf offen und abgeblendet (damals hatte auch Ang. schon MTF-Messungen eingesetzt!). Einen „Bauch“ in der MTF-Kurve hat sogar schon das alte Ernostar 100 f2.0, und as VivitarSerie1 90mm f2.5 (1977) hat sogar auch schon einen kleinen „Überschwinger“ über den MTF-Wert 1. Es hat außerdem die höchste Auflösung aller Objektive mit 85 – 100 mm Brennweite, die ich bisher gemessen habe (mit Ausnahme des nagelneuen Sony GM 85mm f1.4 von 2018) und dabei Verzeichnung Null und CA nahe Null (über ganze Bildfläche). Ein Ausnahme-Objektiv seiner Zeit (… und massiv wie ein Panzer). Schon Modern Photography hatte es seinerzeit als das „best ever“ gefeiert.

Noch eine kurze Anmerkung zu den drastisch geringeren Ecken-Auflösungen bei Offenblende der Objektive aus den 20er bis 60er Jahren – verglichen mit ihrer hohen zentralen Auflösung. Ecken-Auflösungswerte von 500 – 600 Linienpaaren pro Bildhöhe bedeuten ca. 40-45 Linien/mm in der uns früher geläufigen Zählweise. Wenn man sich Testergebnisse aus den 60er und 70er Jahren ansieht (Modern Photography), so werden dort bei Offenblende Werte von 45 Linien/mm am Rand als „Excellent“ bewertet, selbst im Zentrum erreicht kaum ein Objektiv mehr als 80 Linien/mm. „Minimum-Standards“ (=“Acceptable“) lagen in den Ecken bei 20 – 36 Linien/mm. Nach meiner Auffassung war auf Analog-Filmemulsion die nutzbare Auflösungsgrenze bei ca. 1.200 LP/BH (35mm-Film) – und das entspricht genau 100 L/mm.

Das heißt, auch: die alten Optiken, deren Auflösungswerte bei Offenblende am Rand hier sehr schwach aussehen (Ernostar, Angénieux, Contarex Sonnar), sind damit in der Praxis normaler Bild-Fotografie schon sehr gut.


Angenieux 90mm f2,5 bei f2,5: Kantenprofil, MTF-Kurve und Auflösung


Ernostar 100mm f2,0 bei f2,8: Kantenprofil, MTF-Kurve und Auflösung
Ernostar 100mm f2,0 bei f11: Kantenprofil, MTF-Kurve und Auflösung
Contarex Sonnar 85mm f2,0 bei f2,0: Kantenprofil, MTF-Kurve und Auflösung
Contarex Sonnar 85mm f2,0 bei f11: Kantenprofil, MTF-Kurve und Auflösung
VivitarSerie1 90mm f2,0 bei f2,5: Kantenprofil, MTF-Kurve und Auflösung
VivitarSeries1-90f2,5_f8,0_Vgl Kopie.png
VivitarSerie1 90mm f2,5 bei f8: Kantenprofil, MTF-Kurve und Auflösung
Apo-SummicronM ASPH 90mm f2,0 bei f2,0: Kantenprofil, MTF-Kurve und Auflösung
Apo-SummicronM ASPH 90mm f2,0 bei f5,6: Kantenprofil, MTF-Kurve und Auflösung
Sony GM 85mm f1,4 bei f1,4: Kantenprofil, MTF-Kurve und Auflösung
Sony GM 85mm f1,4 bei f4,0: Kantenprofil, MTF-Kurve und Auflösung