Voigtländer VM ULTRON 35 mm f/1.7 an Sony A7Rm4 mit und ohne PCX-Vorsatzlinse – und auf Analog-Film

Bei dem Objektiv-Namen „ULTRON“ bekommen die meisten Liebhaber historischer Kameraobjektive eine Gänsehaut: Optik aus der Rechenstube von W.A. Tronnier – aus seinem XENON abgeleitet, das ein perfektioniertes Planar-Design (Doppel-Gauß) ist.

35mm_f1_7_ultron_Explosion
Fig. 1: Linsenschema Ultron 35mm f/1.7 – Quelle: https://www.voigtlaender.de/objektive/vm/35-mm-f-17-ultron-asphaer/

Auffallend ist die goße Linse mit konkaver Frontfläche – aber ist es wirklich ein ULTRON?

Ultron_Icarex
Fig. 2: Linsenschnitt des historischen Ultron 50 mm f/1.8 für Icarex von 1968 (W.A.Tronnier) – Quelle: http://www.klassik-cameras.de/Bessa_RF_histo_dt.html

Das moderne, für Digitalsensoren berechnete und mit asphärischer Linse ausgestattete Objektivdesign ist ein „Zitat“ des Tronnier’schen Ultron 50mm f/1.8 für die Icarex von 1968.

Auffälligster Bestandteil der Anlehnung an das Icarex-Ultron ist die konkave Frontlinsen-Vorderfläche – seinerzeit ein erstmaliges – danach lange Zeit ein sehr seltenes Design! Derzeit ist das allerdings keine Seltenheit mehr: Zeiss, Sony und Leica haben in den letzten Jahren sehr viele Optiken mit konkaver Frontlinse heraus grebracht – mit hervorragenden Ergebnissen.

Ausgerechnet das wichtigste Merkmal, das ein Planar oder Xenon zum „Ultron“ macht, fehlt bei dem neuen Voigtländer-Design: die Aufspaltung einer der beiden inneren verkitteten Doubletten (im Original der vorderen Doublette!) des Doppel-Gauss … und darüber hinaus die typische Tronnier’sche Verschlankung der dabei entstehenden Einzellinsen in eine dünnere Menisken-Form. Beim neuen Ultron 35 mm fehlt dieses Merkmal völlig – und damit ist das Objektiv nach unserem traditionellen Verständnis keinesfalls ein „Ultron“. Aber wer will der Firma Cosina das Recht absprechen, mit einem fast schon kultisch gehypten Namen (an dem Cosina die Rechte hat!) Marketing-Erfolge zu erzielen – solange etwas Gutes dabei heraus kommt … und das Ergebnis ist hier exzellent!

Mit dem LM-Bajonett ausgerüstet ist es maßlich für Leica-RF basierte Kameragehäuse konstruiert – und daher vermutlich für relativ dünne Filterstacks vor dem Sensor. Das ist bekanntlich eine schlechte Nachricht für Nutzer von Sony A7-Kameras, deren Filterstacks bei 2 mm Dicke liegen. Zu erwarten ist dabei, dass die Auflösung bei voller Öffnung am fernen Rand und in Ecken miserabel sein wird – und ja: sie ist es. Das Objektiv, das im Zentrum auch bei dieser 60MP-Kamera die Nyqist-Frequenz (3.168 LP/PH) schon bei voller Öffnung locker „überfliegt“,  startet „nackt“ an die Sony A7R4 adaptiert bei miserablen 513 / 515 Linienpaaren je Bildhöhe bei f/1.7 und f/2.0. Das war zu befürchten – und deshalb hatte Fotofreund Klaus das Exemplar, das er mir für diese Messungen geliehen hat, bereits mit dem sogenannten „PCX-Filter“ ausgestattet: eine einfache plankonvexe Vorsatzlinse – in diesem Falle mit 5 Metern Brennweite.

Das Ergebnis: Die Auflösung beginnt auch in den Ecken bei Offenblende um die 900 LP/PH – das sind nach alter Väter Sitte immerhin dann schon 75 Linien/mm !

Sehen wir uns die vollständigen IMATEST-Messergebnisse an:

a) Das „nackte“ Ultron 35mm f/1.7 an der Sony A7RIV:

IMG_7403
Fig. 3 – hier über den Techart-LM-Adapter an die A7RIV angesetzt – Quelle: fotosaurier – Leihgabe der Optik von Klaus Breustedt – Danke!

Zunächst die Auflösung über den Blendenwerten aufgetragen:

Ultron35f1,7+PCX-5m_ResolGraph
Fig. 4: Auflösung Ultron 35mm f/1.7 an Sony A7R4 – Quelle: fotosaurier

Erkennbar ist die schwache Offenblenden-Leistung in den Ecken (>75% des Bildkreises) bei sonst sehr guter Performance. „part way“ ist die gesamte Bildfläche zwischen 30% und 75% des Bildkreises.

Aber wie steht es mit den anderen wichtigen Eigenschaften des Objektivs wie Kantenschärfe, Verzeichnung und Chromatische Aberration?

Ultron_35f1.7_Spreadsheet
Fig. 5: Tabelle aller optischen Eigenschaften des Ultron 35mm f/1.7 – Quelle: fotosaurier

Auflösung in der Bildmitte und „edge sharpness“ (Kantenschärfe) hängen eng zusammen – und sind bei diesem Objektiv exorbitant!

Das sensationellste ist aber die Verzeichnung, die hier ja sicher „natur-pur“ für die Optik steht, da ja kein Korrektur-Algorithmus „eingreifen“ kann: Kamera und Objektiv haben keine Beziehung zueinander! Wenige hundertstel Prozent und dann noch „Moustache“, also keine eindeutige Linienkrümmung – das ist „NULL“ Verzeichnung – jedenfalls bei der Meßentfernung von ca. 1,2 Metern.

Die C-A in der Bildmitte ist auch an der Sony ordentlich – beginnend bei Offenblende knapp über ein Pixel am Bildrand – da sind dann bei 400% schon deutliche Farbsäume zu sehen:

DSC02304_Ultron_35f1,7_2,0_Radial_2022-09-14_23-01-40
Fig. 6: Radialer C-A Verlauf des Ultron 35f1.7 an A7R4 über die Bildfläche bei Blende 2.0 – Quelle: fotosaurier

In der Bildmitte sehe ich nur einen leichten gelb-rötlichen Schimmer verursacht durch die erkennbare Aufspaltung der RGB-Kurven im Hell-Dunkel-Übergang., aber keinen Farbsaum:

DSC02304_Ultron_35f1,7_2,0_Chr_Aber_2022-09-14_23-00-51
Fig.7: Aufspaltung der RGB-Stahlen am Hell-Dunkel-Übergang – Quelle: fotosaurier

b) Das VM Ultron 35 mm f/1.7 an der Sony A7RIV mit vergüteter (plano-konvexer) PCX-Vorsatzlinse mit 5 Meter Brennweite (PCX-5m)

Die Sammel-Linse soll dabei die objektseitige Wellenfront so deformieren, dass die Bildfeldkrümmung, die durch den dicken Filterstack der Sony-Kamera an Rand und Ecken erzeugt wird, kompensiert wird.

Dieser Effekt tritt tatsächlich ein, allerdings wird die gesamte Bildfläche von der Korrekturlinse beeinflusst – wir sehen uns an, was da passiert. (Nicht zu vergessen, dass wegen der positiven Vorstzlinse nur dann noch auf Unendlich fokussiert werden kann, wenn der Adapter zur Kamera im kürzesten Auflagemass flacher gemacht werden kann bzw diese Reserve schon besitzt …)

Ultron35f1,7+PCX-5m_ResolGraph
Fig. 8: Resolution Graph of Ultron 35 f/1.7 with PCX-Front-Lens of f=5 m – Source: fotosaurier

Die Auflösungen bei offener Blende und den folgenden Stops ist in Ecken und „part-way“ (in den Ecken auch generell über die gesamte Blendenreihe!) deutlich angehoben bei 1.7/2.0 auf fast das Doppelte!

Gleichzeitig sinkt die Auflösung im Zentrum etwas – und auch in der folgenden Tabelle sieht man, dass die Kantenschärfe etwas geringer wird – aber immerhin wird in der Bildmitte immer noch von Bl. 2.0 – 8.0 die Nyquist-Auflösung des A7R4-Sensors erreicht oder übertroffen.

Ultron35f1,7+PCX-5m_Spreadsheet
Fig. 9: All properties of Ultron 35 f/1.7 with PCX-Front-Lens of f=5 m – Source: fotosaurier

Die „edge sharpness“ ist leicht verringert, die Verzeichnung immer noch überirdisch gut, wenn auch nicht mehr „Moustache“ sondern generell „pincushion“, dagegen ist die Chroma (am Bildrand!) deutlich verringert:

DSC02333_Ultron+PCX5_35f1,7_2,0_Radial_2022-09-15_08-36-53
Fig. 10: C-A radial of Ultron 35 mm f/1.7 at f/2.0 with PCX-5m Corrector lens – Source: fotosaurier

Beide Äste der radialen C-A-Kurven sind flacher als in Fig. 6 – besonders auffällig ist das aber bei der roten Kurve!

Tatsächlich ist bei allen meinen Messungen mit der PCX-Korrektur-Vorsatzlinse der gleiche Effekt zu sehen: die Chroma an Rand/Ecken ist damit deutlich reduziert – und damit geht die Verbesserung der Auflösung dort einher!

Stellen wir uns vor, wie die sehr schrägen bildseitigen Strahlen auf den dicken Filterstack (dessen optische Wirkung in der Objektiv-Berechnung nicht berücksichtigt wurde/werden konnte!) auftreffen: die Strahlen werden gebeugt – aber auch im Sinne eines Prismas spektral unterschiedlich abgelenkt (https://de.wikipedia.org/wiki/Datei:Prism-rainbow-black.svg).

Damit liegt für mich der Schluss nahe, dass die eigentliche Wirkung der PCX-Linse darin liegt, dass der Farbfehler, den die einfache vorgesetzte Linse unweigerlich hat, den von der planen Filterplatte an Rand und Ecken erzeugten prismatischen Farbfehler kompensiert. Wie wir sehen, nicht vollständig – aber in der Praxis sehr wirksam! Das bedeutet, dass andere Glassorten in der PCX-Linse (hier ist es wohl BK7) noch Optimierungsmöglichkeiten enthalten würden.

Aber vergessen wir bitte nicht: es ist ja eine einfache, sehr preiswerte d.h. pragmatische Maßnahme, die in der gleichen Größenordnung wirken kann, die ein dünnerer Filterstack bewirkt!

Sehen wir uns hier abschließend noch die C-A in der Bildmitte am Hell-Dunkel-Übergang an:

DSC02333_Ultron+PCX5_35f1,7_2,0_Chr_Aber_2022-09-15_08-36-39
Fig.11: Aufspaltung der RGB-Stahlen am Hell-Dunkel-Übergang -Sony A7R4 – Ultron + PCX-5m-Linse – Quelle: fotosaurier

Auf der hellen Seite sieht man eine leichte Verbesserung zu Fig. 7 – auf der dunklen eine gewisse Verschlechterung, wobei diese Abweichungen in den RGB-Strahlen im Bild auch bei hoher Vergrößerung praktisch nicht zu sehen sind. Ab Bl. 4 kommen die drei RGB-Linien dann praktisch perfekt zur Deckung!

Die Ergebisse zeigen damit Fotofreund Klaus, dass seine Kombi aus Ultron 35 mm f/1.7 und PCX-Vorsatzkorrektor-Linse ein fabelhaftes Gespann ist, und er weiß jetzt warum er damit bisher schon so glücklich war…

Ich habe auch praktische Aufnahmen mit der A7R4 mit der Kombination gemacht und kann die Messungen absolut bestätigen – vor allem liefert sie großartige Sonnensterne, die Klaus ja so liebt!

DSC02361_Wordpress

Fig. 12: Gegenlichtbild mit Sonnenstern VM ULTRON 35mm f/1.7 an A7R4 mit PCX-5m Vorsatzlinse – Quelle: fotosaurier

AKTUALISIERUNG:

Nachdem es mir in den letzten Monaten gelungen ist, Analog-Aufnahmen auf Film ebenfalls mit der IMATEST-Software zu analysieren (Grundsatzartikel hier!), kann ich nun noch hinzufügen, wie das Auflösungsvermögen des ULTRON 35mm f/1.7 auf Film im Vergleich zu den Aufnahmen direkt auf dem Sony-Sensor ist – dies ist sozusagen „die Wahrheit“ über das Objektiv, denn hierfür ist es konstruiert worden:

pastedGraphic.png

Fig. 13: Auflösungsvermögen des Ultron 35mm f/1.7 auf Analog-Schwarzweiß-Film Agfa APX100. Kamera: Minolta CLE. Die blaue Linie bei 2.360 LP/PH repräsentiert die Nyquist-Frequenz des verwendeten Film-Scanners RPS 10M – Mehrfachscan mit 5.000 ppi, entsprechend ca. 33 Megapixel im ganzen Bildrahmen – Quelle: fotosaurier

Hier erkennen wir, dass das Objektiv eine sehr gleichmäßig hohe Auflösung beginnend schon bei voller Öffnung über den gesamten Blendenbereich liefert – wobei die höchste Auflösung in der Bildmitte ähnliche Werte erreicht wie der Sensor der Sony A7R4 mit 61 Megapixeln. Natürlich wird das mit relativ hohen (aber nicht extremen!) Schärfungsparametern (USM) erreicht – die Kontrolle von „real world-Fotos“ auf demselben Film zeigte dann aber noch keine Schärfe-Artefakte!

Besonders auffallend ist die hohe Auflösung in den Bildecken bereits bei voller Öffnung. Deutlicher zu sehen in der folgenden vergleichenden Zusammenstellung:

pastedGraphic_1.png

Fig. 14: Ultron 35mm f/1.7 Auflösungskurven an Sony A7R4 (Nyq-Fr 3.168 LP/PH) – grün+grau+gelb – und auf Analogfilm Agfa APX100 gescannt bei 5.000 ppi (Nyq-Fr 2360 LP/PH) – rot+magenta+blau – Quelle: fotosaurier

Hier wird sehr deutlich, dass die Eckenauflösung am Digitalsensor (gelbe Kurve, ohne PCX-Vorsatzlinse) dramatisch gegenüber der Performance auf dem Film (hellblaue Kurve) „abstürzt“ – eindeutig keine Schwäche des Objektivs, sondern ein Artefakt durch einen ungünstigen Lichteinfall auf den Sensor im Eckenbereich. Ich bin ziemlich sicher, dass das verursacht wird durch laterale CA, die an dem sehr dicken Filter-Stack der Sony A7R4 vor dem Sensor.

Im Bildzentrum erscheint die Auflösung am Sensor deutlich höher zu sein im Vergleich zum Analog-Film. Hier bin ich allerdings vorsichtig mit der Deutung, denn die Ausrichtung der Rangefinder-Kamera ist sehr problematisch, da man keinerlei Hilfen im Sucherfenster dafür hat – und eine gute Optik erreicht ihre optimale Leistung beim Fokussieren mit dem Entfernungsmesser einer beliebigen Kamera (hier der Minolta CLE) nur nach präziser Justage dieses spezielle Objektivs auf diese spezielle Kamera! 

Durch die PCX-Vorsatzlinse an der Sony-Digicam wird diese Schwäche nur zum Teil ausgeglichen (s. Fig. 8). Da ich erwartete, dass ein wesentlich dünnerer Filterstack hier bessere Ergebnisse mit Digitalsensor ermöglicht, habe ich mir eine

Nikon Z7 II

geliehen, die bekanntlich einen weniger als halb so dicken Filterstack besitzt, und damit das VM Ultron 35mm f/1.7 durchgemessen.

Zuerst ohne PCX-Filter:

Fig. 15: Auflösungskurven des VM Ultron 35mm f/1.7 an der Nikon Z7 II mit 45,4 Megapixel und dünnem Filterstack – Quelle: fotosaurier

Der Abfall in den Ecken ist relativ gesehen geringer. Hier beseitigt das PCX-Filter dann den Eckenabfall der Auflösung vollständig:

Fig. 16: Auflösungskurven des VM Ultron 35mm f/1.7 MIT PCX-Vorsatzlinsean der Nikon Z7 II mit 45,4 Megapixel, die blaue Linie entspricht der Nyquist-Frequenz von 2.752 LP/PH – Quelle: fotosaurier

Allerdings wird hier ein sehr spezielles Problem der Nikon Z7 II (genau gleich bei der Vorgängerin Z7) sichtbar:

Bei noch vertretbarer Schärfung bleibt die Auflösung des Sensors deutlich unterhalb des Nyquist-Frequenz für die 45,4 MP. Tatsächlich messe ich exakt die gleichen Auflösungswerte, wenn die Kamera intern auf 25,6 MP umgestellt wird.

Auf (mehrfaches) Fragen an Nikon, warum das so ist, erhielt ich bisher keine Antwort.

Anhand der MTF-Mess-Kurven dieser Kamera konnte ich mir selbst die Erscheinung erklären:

Dies ist die MTF-Kurve der Nikon ZII mit dem VM Ultron 35mm:

Fig. 17: MTF-Kurve mit VM Ultron 35mm f/1.7 bei f/2.0 an der Nikon Z7 II – Quelle: fotosaurier

Hier sieht man, dass Nikon die MTF-Kurve (für JPEG-Bilder ooc) so beeinflusst, dass der Kontrast bei NIEDRIGEN Frequenzen stark erhöht ist – das (vorläufige) Minimum aber (dann zwangsläufig?) genau bei der Nyquist-Frequenz (2.752 LP/PH entspr. der Sensorgröße von 45,4 MP) liegt. Es beträgt dort dann 10-20%. Das heißt, dass MTF30 nie auch nur annähernd bei der Nyquist-Frequenz liegen kann. Aber bei höheren Frequenzen deutlich über der N.-Fr. kann der Kontrast dann wieder über 30% steigen. Ist das Aliasing? Ich habe versucht diesen Effekt mit dem Siemensstern  sichtbar zu machen – bisher ohne Erfolg.

Diese Form der MTF-Kurve ist bei allen Optiken an der Nikon Z 7II ähnlich – auch bei typischen SLR-Optiken!

Zum Vergleich hier die MTF-Kurve an der Sony A7R4:

Fig. 18: MTF-Kurve mit VM Ultron 35mm f/1.7 bei f/2.0 an der Sony A7R4 – Quelle: fotosaurier

Hier liegt das Minimum der MTF-Kurve weit oberhalb der Nyquist-Frequenz. Es findet auch keine starke Kontrast-Überhöhung bei niedrigen Frequenzen statt.

Ähnliche MTF-Kurven liefern fast alle mir bekannten Digicams (Leica M11, Fuji X und GFX). Die Nikon Z7 II ist hier die absolute Ausnahme.

Offensichtlich will der Hersteller Nikon seinen Nutzern dieses besondere Kontrastübertragungs-Verhalten von Out-Of-Camera Bildern ja bieten, bei dem ein deutlich überhöhter Kontrast bei niedrigen und mittleren Bildfrequenzen entsteht – unter Verzicht auf die technisch mögliche Sensorauflösung – immerhin von über 20%!

Aber warum erklärt der technische Kundendienst in Dresden das dann nicht, wenn man gezielt nachfragt.

Ich werde abschließend noch einmal der Frage nachgehen, wie die Situation sich beim Arbeiten mit RAW-Dateien bei der Nikon zeigt. Die Erkenntnisse werde ich dann hier ergänzen

© fotosaurier

Herbert Börger, Berlin, September 2022 / November 2023

My Crazy Lenses / Meine sehr speziellen Objektive – Focal length 24mm / Brennweite 24mm – FoV 84° – Part I

What was the real improvement in SLR-wideangle-lenses since the invention of the retrofocus principle over the last 65 years? Does my personal judgement from analog-film-days which lead to the definition of „legendary optics“ – which I kept in my lens-portefolio over that time – correlate with objective resolution-measurements? Here are my findings.

Actualisation: Im my first published version there was an error regarding the year of appearance of the Topcor 2,5cm-lens, which was communicated to me by a reader: thank you: it’s 1965 instead of 1959! But this difference does not change anything in my findings and conclusions …

1 – Introduction

24mm focal length is a real milestone in spreading the field of the view in wideangle lenses, coming down from FL 35mm over 28mm. For the SLR-camera-user this age started with the appearance of the retrofocus lenses in the 1950s. Several designers came out with this optical principle within three years – with Pierre Angénieux earning the honours of being FIRST (in time and quality – 1950, 35mm f/2.5) in this disciplin.

This is a report about SLR-lenses for 35mm-still-foto-cameras with focal lengths (FL) between 23mm and 25mm.

This is a report about a number of legendary lenses, which I happen to own or could lend from a friend  („phothograf“), most of them being milestones of optical engineering in their respective design-periods.

Drei_24er-Oldies_DSCF1838
Fig 1: three of the very first historical retrofocus-lenses with FL 24mm and 25mm – source: fotosaurier

Over the decades of my own practical use of SLR-lenses (of nearly all makers-brands!) has lead me to an understanding of the quality for normal photographic use.

This collection of test candidates does NOT claim to be a COMPLETE collection of all design legends of 24mm/25mm. There is a large gap in time with prime-lenses between 1984 and 2015. That means: the legendary first historical aspherical lenses in this range are missing in the comparison. If I ever will be able to get hold of them for a test, I would update this article. The modern lenses tested for comparison are (of course) all aspherical types!

In spite of the fact, that important legendary lenses of the 1980s and 90s are missing here, this report allows to draw some interesting conclusions about important steps in optical lens-engineering, which finally lead to Ultra-Wideangel-Lenses which have uniform resolution and contrast over the complete field of view (FoV).

I have always looked for a method to show the quantitative progress in optical quality of photographic lenses over the nearly last 100 years – and I think I have found a good way to understand this progress with my new comparison-charts (Fig. 4 and Fig. 5 see below). What was surprising: the progress over time is independent of the lens-maker and brand. It is generated by a sequence of milestone-like innovations by singular design-legends, innovative calculation progress, creation of new glass-formulations and finally the lens-making-process – espacially allowing for the production of aspherical lens-surfaces! Once the innovation-step is basically made, it is spreading around the globe very quickly (typically within one or two years!).

There are few lenses, which stand out of the general quality-development curve, reaching a higher level of resolution earlier than most others – to be seen here mostly in Fig. 5:

ATTENTION: These measurements are made with USED lenses today, some of which are more than 60 years old! There are influences from ageing and wear (even abuse …) which have become part of the lens-properties when we measure them after long time. However, I only make measurements with samples of lenses, if the optics are clear and undamaged and the mechanics do not show excessive wear or abuse.

Vier_24+25er
Fig. 2: Starting with big-big negative front-meniscus-lenses (at left Angenieux Retrofocus 24mm f/3.5 and Zeiss Jena Flektogon 25mm f/4) the lens-designers soon learnt to reduce the front-lens diameter (at right: Distagon 25mm f/2.8 for Contarex and Olympus OM 24mm f/2,0), creating better results and generating lens-bodies, which were more acceptable  – source: fotosaurier

2 – Data section for 15 historical 24/25mm-prime lenses, 3 modern 23/25mm prime lenses and 4 modern zooms at 24mm-setting:

Auflösung ETC 23-25mm korr

Out of this Chart I have filtered two separate charts, showing the development of RESOLUTION over the decades.

Fig. 4 shows the center-resolution open aperture (blue) and stopped down to the aperture with the highest resolution (green) in the center:

23-25mm_Resol_Center_korr

23-25mm_Diagram_Center_korr

The second chart is showing the corner-resolution at open aperture (blue) vs. the best resolution-value stopped down (green) in the corners (mean value over all four corners) – where „corner“ means a value of 88% – 92% of the full picture circle of the lens which is 21.5 mm radius:

23-25mm Resol_Corners_korr

23-25mm_Diagramm_Corners_korr
Fig. 5: Corner Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and optimum aperture (green, which means: the aperture at which the weighted mean of all the 46 measurement-places over the 24x36mm-frame is maximum. (The maximum corner resulution-value of the individual lens may be higher.) – source: fotosaurier

You see, that nearly all of the difference in resolution of historical top-notch wideangle-lenses for SLR is in the corners of the picture (and of course also continuously in-between center to corner areas). This is easy to understand, because the difficulties for lens-correction rise dramatically with the FoV, which is here 84 degrees corner to corner diagonally.

Besides the resolution, there are other important properties, which improved dramatically over these six decades of lens-engineering history:

a – Chromatic aberration (CA in pixel): It is very low in all these lenses in the center. It typically ranged between 4 and 8 pixels in the corners for the very first lenses of this type. It stayed around 2-3 over the time before aspherical lens-surfaces could practically erase it. Today with the best modern lenses, the value is close to zero (under 0.5) without camera correction and zero with correction.

Among the early lenses the Zeiss Distagon 25mm f/2.8 (though not really outstanding in resolution compared to the other early lenses) pops out, because it had already values of 2-2.5 pixel in the corners – together with the „unicorn“ Topcor 2,5cm f/3.5.

Please consider, that the CA-value in pixel for the same lens is the higher the smaller the pixel size of the sensor is  – here 1 pixel is 3.77 µm.

b – Linear distortion (%): distortion shows – from the beginning – the biggest differences between the legendary lenses of the different designers and brands. The designer has to do a compromise-job in each lens, balancing out the design between resolution, chromatic aberrations and distortions. 0,5 pixel is a very good CA-value even acceptable for acrchitectural work (though „zero“ would be better, of course), 0,75-1,0 pixel is a good compromise-value and 1.5 pixel just acceptable for alround use.

Looking at the spread-sheet Fig. 3, it is surprising, that Angénieux with the very first retrofocus-lens of this wide angle decided to go for nearly „ZERO“ distortion in his design! He had gone close to zero in the 35mm and 28mm-designs before that, too! Probably he wanted to give a statement of his art, because this was really difficult at that time … At the same time he accepted a somewhat higher CA of 7-8 pixels (corresponding to 0.03-0.04 mm). In my collection of top-notch lenses such a low distortion does not appear again before the modern Zeiss Batis Distagon 25mm f/2.0 – and only the legendary 1971 Minolta MD 24mm f/2.8 (including the VFC-Version) came very close with ca. 0.18-0.29% distortion in my measurements.

c – The close-focusing system: there are further innovations to consider, e.g. the lens-design for close focusing. Here one of the important innovations is the floating-element close focusing system – introduced 1971 by Nikon and Minolta first for wideangle lenses as far as I know. This is one of the early merits of the two 1971/75 24mm-Minolta-lenses.

3 – Conclusions:

3.1 Center-resolution:

Since the early days of geometrical optic lens-design with Petzval, Abbe and Seidel, lenses could be designed absolutely perfect for nearly unlimited image-quality (resolution and CA) „on-axis“, which means: in the center of the picture-field … And the  famous designers did it all the time – as soon as they used 4 or more elements in a photographic lens-system.

The first time, I found a proof for that, was with my resolution-measurements on Bertele’s first Ernostar 100mm f/2.0 from 1923 (a four-element-design WITHOUT COATING!). Compared to the legendary Leitz Apo-Macro-Elmarit 100mm f/2.8 from 1987, this lens achieved 98% of the resolution in the center – but only in the center! See my Ernostar-Bog-Article here. (This was the very first report in my photo-blog …)

So, it is not really surprising, what Fig. 4 is telling us: all top-notch lenses show a very high resolution level in the image center since the invention of the retrofocus wideangle design in the 1950s – and they are all on the about same level – though being historical lenses with up to 65 years of age on their back! The reason for that result is, of couse, that only legendary lenses of all brands are taken into the comparison! Maybe the Takumar-lens happens to be one of the weaker examples …

The Olympus OM 24mm f/3.5 „shift“ drops down somewhat against its neighbours. That is no quality issue: this lens has an image-circle diameter of 57mm for up to 10 mm shift! It came out 1984 long before Canon brought out its famous tilt-shift-lenses … Look at the corner-resolution result of this lens in Fig. 5 – it resolves extremely even over its FoV!

in this graph I marked two horizontal lines: one for the resolution of 2.000 LP/PH (linepairs per picture height), corresponding to the resolution of a 24 MP-sensor, which today is the de-facto-standard for  modern digicams. It normally has 4.000 by 6.000  pixels – and 4.000 pixels in the picture height, corresponding to 2.000 Linepairs. At the same time it is just (+15%) above the 21 MP which I estimate for the resolution of modern analogue (general purpose) film emulsions.

The other (upper) horizontal line marks the 3.184 LP/PH Nyquist-frequency of the Sensor in the Sony A7R4-digicam. This is physically the limiting resolution-value for the camera itself. Today, however, the software-algorithms in the camaras can generate structures in the picture, which are typically 15 – 20% higher in resolution, compared to the Nyquist-frequency. And they do this without creating an artificially looking „oversharpened“ picture! Good job!

This means:

All the legendary historical 24/25mm-retrofocus-lenses for SLR-cameras do out-resolve the modern 24 MP-Digicams in the center – mostly even with open aperture! And many of these lenses even come very close to (or exceed) the Nyquist-Frequency of my 60,2 MP digital camera.

Among the historical lenses two examples peek out a little bit (they peek out much more in the graph for the corner-resolution!):

The legendary 1965 Topcor 2,5cm f/3.5 exceeds the Nyquist-frequency of 3.184 LP/PH – and stopped down to f11 it is in the center the highest resolving of my 24/25mm-lenses until today. Together with the tremendous result of its corner-resolution it is one of the exceptional lenses, which I call my „UNICORNS„. Until today, I have not found any explanation for the astonishing early level of performance of this lens – how could that have been achieved? (15 years before the next-best Olympus-lens!) – and who did it? – and where did this person go afterwards, when Topcons innovative power faded out, to bring in her/his inginuity? (… to Olympus?). (This observation refers to other early Topcor-lenses al well!)

The other unicorn peeking out here is the Olympus OM 24 mm f/2.0 of 1973. In my lens-collection it is exceeded only by the 40 years younger Zeiss Batis 25mm f/2.0. But, to be honest, the difference is not really that dramatical – considering the four decades …

Referring to the zoom-lenses (set at FL 24mm) in this test: I just was curious, where the modern zooms would stand in such a comparison. We learn that the 1kg-Monster-Tokina 24-70mm zoom at 24mm has one of the best results – even at f/2.8 … in the center of the picture.

At the end of the line-up of 21 lenses I put the Fujinon-Zoom 32-64mm f/4 at 32 mm on the Fujifilm GFX100 (33x44mm – 102 MP), which corresponds to FL 26mm on „full-frame 35mm“. This shows, that for an essentially higher resolution in the picture-center, we today have to go to a larger sensor-format.

3.2 Corner-resolution:

Fig. 5 contains the important informations of this comparison-test. It shows, that step by step all the improvements in innovative design, glass-formulations and aspherical surface-generation were needed to bring finally the corner-resolution of the picture up on par with the center resolution at 24mm focal length, which is possible today – but only with the use of aspherical lens-elements!

In the graph for the corner-resolution I have added a third horizontal line, which marks the resolution at 50 Lines/mm – corresponding to 600 LP/PH. This is needed to judge the corner-resolution of the early historical lenses.

In the 1960s a wideangle-lens was rated „very good“, when it achieved a resolution of 40 Lines/mm (Modern Photography and others). I have written an article about this already here (in German).  Open aperture most super-wideangle-lense started open aperture in the range of 26 to 32 L/mm in the 1950s and 60s. Stopped down practically all the tested historical lenses surpassed the 40 L/mm-limit.

From 1958 on (ENNA) the stop-down corner-resolution rises continualy (with the exception of the two „unicorns“, already identified in Fig.4) until end of the 1970s,  it arrives close to the 2.000 LP/PH-level, which means: from now on the top-notch-lenses out-perform standard analogue fine-grain film (1977 Nikkor and 1984 Olympus). This last step was then achieved by the use of extraordinary dispersion glass-types.

The two „unicorns“ in this test arrive much earlier at this level: the Topcor 2,5cm f/3.5 out-performs analogue film already in 1959 and the 1973 Olympus OM 24mm f/2.0 exceeds this and comes close to todays modern aspherical lenses.

The modern aspherical prime-lenses are represented in my test by two very different samples:

There is the 23mm f/4 Fujinon, which originally is a GFX-lens – but in this test it is measured in the 24x36mm-Mode also with 60.2 MP on the GFX100, achieving the state of the art for 24x36mm lenses (Batis and Sigma-i) as a middle-format lens!

Just as I made my measurements for this test, the SIGMA i-Series 24mm f/3.5 arrived as a representative of a new thinking: no „impressive“ technical data   – but (hopefully) impressive preformance instead. The result shows: it achieves reference status on a 60.2 MP-sensor with corner-resolution at 85-95% of center-resolution, plus zero-distortion, zero-CA and very close focussing!

Also great news: modern zooms like the Sigma G 12-24mm f/4 – measured at 24mm – arrive now at this level of prime-lenses also in the corners!

As I had no samples of the early historical aspherical lenses in this test, we can not see, in which steps the aspherical lens surfaces moved the wideangle-performance in the picture-corners to the present level.

Maybe this gap can be filled out in some future times.

NOTE 1 – All resolution-values, which are published in this article, refer to MTF30 – what means: the point on the MTF-curve (see Fig. 7), which hits the 30% contrast value.

NOTE 2 – in Part II of this Article I will share some more informations about each individual lens (including pictures, MTF-curves and  lens-schemes).

Appendix: Method of measurement and definition of results

I use the set-up and software by IMATEST with the original IMATEST-Target. I use the large SFRplus-Setup-Image with a physical hight of 783mm bar-to-bar vertically. The distance from target to lens-flange is 0,97 meters. In this area 46 targets are analysed and I share MFT30-weighted-mean-resolution-values (all-over, center and corner), edge-sharpness, linear distortion and maximum lateral CA-values.

Resolution-values are given in Line-Pairs per Picture Height (LP/PH) – where the picture-height is always 24mm. Edge-sharpness is given in pixels (width 3,77 µm).

#TestChart_Angén90f2,5_f2,5
Fig. 6: IMATEST test-target 783mm-bar-to-bar distance. Resolution is NOT measured in the small concentric targets, but at the outside-edges of the black boxes, which are tilted b ca. 5 degrees – source: fotosaurier.

For the measurement I used a SONY A7Rm4 with 60,2 MP-resolution which has a pixel-width of 3,77 µm. The theoretical resolution-limit of the sensor is 3.184 LP/PH (Nyquist Frequency).

The camera setting is used basic as delivered from factory at ISO100 and exposure-compensation of -0.7 stops, using out-of-camera JPEGs. All measurements are made with the identical camera-body (which is important for a precise comparison: I have used one other (earlier) body of this model in comparison, which gave resolution-values between 50 and 200 LP/PH lower than my own camera-body). The repeatability with this method I estimate at 2-2.5%, using ALWAYS manual focusing on the lens with maximum focusing enlargement (11.9-fold) in the camera-viewing-system. Measurement is repeated with re-focusing until a stable maximum resolution at open-aperture of the lens is found and then pictures of the resolution-target are taken with the focussing made wide open for all full down-stops of each lens.

Edge profile (edge-sharpness) is the width of the rise from 10% to 90% intensity at a dark-bright edge in the test target – measured in pixel (width 3,77 with the camera used) – Example shown here for the latest 24mm-prime-lens SIGMA i-Series 24mm f/3,5 – at open aperture f/3,5:

Edge+MFT_Sigma24f3,5
Fig. 7: Edge-profile (top) and MTF-curve (bottom) from the IMATEST software – here the perfect graphs for the brand new Sigma 24mm f/3.5 – at open aperture. I will publish these Curves for all the lenses in PART II of this article – source: fotosaurier

Cromatic Aberration (lateral in the picture-plane) is also measured in pixel separate for red against green and blue against green over the full picture field – in the spread-sheet I note the maximum value, which is in most cases for blue and for most historical lenses in the corners of the picture – sometimes however in the intermediate area.

For more details of testing read my special blog-Article here.

Copyright: Herbert Börger

Berlin, March/April 2021