My Crazy Lenses / Meine sehr speziellen Objektive – Focal length 24mm / Brennweite 24mm – FoV 84° – Part I

What was the real improvement in SLR-wideangle-lenses since the invention of the retrofocus principle over the last 65 years? Does my personal judgement from analog-film-days which lead to the definition of „legendary optics“ – which I kept in my lens-portefolio over that time – correlate with objective resolution-measurements? Here are my findings.

1 – Introduction

24mm focal length is a real milestone in spreading the field of the view in wideangle lenses, coming down from FL 35mm over 28mm. For the SLR-camera-user this age started with the appearance of the retrofocus lenses in the 1950s. Several designers came out with this optical principle within three years – with Pierre Angénieux earning the honours of being FIRST (in time and quality – 1950, 35mm f/2.5) in this disciplin.

This is a report about SLR-lenses for 35mm-still-foto-cameras with focal lengths (FL) between 23mm and 25mm.

This is a report about a number of legendary lenses, which I happen to own or could lend from a friend  („phothograf“), most of them being milestones of optical engineering in their respective design-periods.

Drei_24er-Oldies_DSCF1838
Fig 1: three of the very first historical retrofocus-lenses with FL 24mm and 25mm – source: fotosaurier

Over the decades of my own practical use of SLR-lenses (of nearly all makers-brands!) has lead me to an understanding of the quality for normal photographic use.

This collection of test candidates does NOT claim to be a COMPLETE collection of all design legends of 24mm/25mm. There is a large gap in time with prime-lenses between 1984 and 2015. That means: the legendary first historical aspherical lenses in this range are missing in the comparison. If I ever will be able to get hold of them for a test, I would update this article. The modern lenses tested for comparison are (of course) all aspherical types!

In spite of the fact, that important legendary lenses of the 1980s and 90s are missing here, this report allows to draw some interesting conclusions about important steps in optical lens-engineering, which finally lead to Ultra-Wideangel-Lenses which have uniform resolution and contrast over the complete field of view (FoV).

I have always looked for a method to show the quantitative progress in optical quality of photographic lenses over the nearly last 100 years – and I think I have found a good way to understand this progress with my new comparison-charts (Fig. 4 and Fig. 5 see below). What was surprising: the progress over time is independent of the lens-maker and brand. It is generated by a sequence of milestone-like innovations by singular design-legends, innovative calculation progress, creation of new glass-formulations and finally the lens-making-process – espacially allowing for the production of aspherical lens-surfaces! Once the innovation-step is basically made, it is spreading around the globe very quickly (typically within one or two years!).

There are few lenses, which stand out of the general quality-development curve, reaching a higher level of resolution earlier than most others – to be seen here mostly in Fig. 5:

ATTENTION: These measurements are made with USED lenses today, some of which are more than 60 years old! There are influences from ageing and wear (even abuse …) which have become part of the lens-properties when we measure them after long time. However, I only make measurements with samples of lenses, if the optics are clear and undamaged and the mechanics do not show excessive wear or abuse.

Vier_24+25er
Fig. 2: Starting with big-big negative front-meniscus-lenses (at left Angenieux Retrofocus 24mm f/3.5 and Zeiss Jena Flektogon 25mm f/4) the lens-designers soon learnt to reduce the front-lens diameter (at right: Distagon 25mm f/2.8 for Contarex and Olympus OM 24mm f/2,0), creating better results and generating lens-bodies, which were more acceptable  – source: fotosaurier

2 – Data section for 15 historical 24/25mm-prime lenses, 3 modern 23/25mm prime lenses and 4 modern zooms at 24mm-setting:

24er_all-physical-data_1
Fig. 3: Physical Data and resolution data  of all the tested lenses – the c/y-mount-Distagon of 1970 I could not measure stopped down. Therefor it is missing in the following comparison-diagrams. „Milestone-lenses“ are marked green – source: fotosaurier

Out of this Chart I have filtered two separate charts, showing the development of RESOLUTION over the decades.

Fig. 4 shows the center-resolution open aperture (blue) and stopped down to the aperture with the highest resolution (green) in the center:

23-25mm_Resolution_Center

23-25mm_Diagram_Center
Fig. 4: Center Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and stopped down to optimum aperture (which means: the aperture at which the weighted mean over all the 46 measurement-places in the 24x36mm-frame is maximum. (The maximum center resulution-value of the individual lens may be higher.) In Fig. 3 you can look-up, which the optimum aperture is. – source: fotosaurier

The second chart is showing the corner-resolution at open aperture (blue) vs. the best resolution-value stopped down (green) in the corners (mean value over all four corners) – where „corner“ means a value of 88% – 92% of the full picture circle of the lens which is 21.5 mm radius:

23-25mm Resol_Corners_korr

23-25mm_Diagramm_Corners_korr
Fig. 5: Corner Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and optimum aperture (green, which means: the aperture at which the weighted mean of all the 46 measurement-places over the 24x36mm-frame is maximum. (The maximum corner resulution-value of the individual lens may be higher.) – source: fotosaurier

You see, that nearly all of the difference in resolution of historical top-notch wideangle-lenses for SLR is in the corners of the picture (and of course also continuously in-between center to corner areas). This is easy to understand, because the difficulties for lens-correction rise dramatically with the FoV, which is here 84 degrees corner to corner diagonally.

Besides the resolution, there are other important properties, which improved dramatically over these six decades of lens-engineering history:

a – Chromatic aberration (CA in pixel): It is very low in all these lenses in the center. It typically ranged between 4 and 8 pixels in the corners for the very first lenses of this type. It stayed around 2-3 over the time before aspherical lens-surfaces could practically erase it. Today with the best modern lenses, the value is close to zero (under 0.5) without camera correction and zero with correction.

Among the early lenses the Zeiss Distagon 25mm f/2.8 (though not really outstanding in resolution compared to the other early lenses) pops out, because it had already values of 2-2.5 pixel in the corners – together with the „unicorn“ Topcor 2,5cm f/3.5.

Please consider, that the CA-value in pixel for the same lens is the higher the smaller the pixel size of the sensor is  – here 1 pixel is 3.77 µm.

b – Linear distortion (%): distortion shows – from the beginning – the biggest differences between the legendary lenses of the different designers and brands. The designer has to do a compromise-job in each lens, balancing out the design between resolution, chromatic aberrations and distortions. 0,5 pixel is a very good CA-value even acceptable for acrchitectural work (though „zero“ would be better, of course), 0,75-1,0 pixel is a good compromise-value and 1.5 pixel just acceptable for alround use.

Looking at the spread-sheet Fig. 3, it is surprising, that Angénieux with the very first retrofocus-lens of this wide angle decided to go for nearly „ZERO“ distortion in his design! He had gone close to zero in the 35mm and 28mm-designs before that, too! Probably he wanted to give a statement of his art, because this was really difficult at that time … At the same time he accepted a somewhat higher CA of 7-8 pixels (corresponding to 0.03-0.04 mm). In my collection of top-notch lenses such a low distortion does not appear again before the modern Zeiss Batis Distagon 25mm f/2.0 – and only the legendary 1971 Minolta MD 24mm f/2.8 (including the VFC-Version) came very close with ca. 0.18-0.29% distortion in my measurements.

c – The close-focusing system: there are further innovations to consider, e.g. the lens-design for close focusing. Here one of the important innovations is the floating-element close focusing system – introduced 1971 by Nikon and Minolta first for wideangle lenses as far as I know. This is one of the early merits of the two 1971/75 24mm-Minolta-lenses.

3 – Conclusions:

3.1 Center-resolution:

Since the early days of geometrical optic lens-design with Petzval, Abbe and Seidel, lenses could be designed absolutely perfect for nearly unlimited image-quality (resolution and CA) „on-axis“, which means: in the center of the picture-field … And the  famous designers did it all the time – as soon as they used 4 or more elements in a photographic lens-system.

The first time, I found a proof for that, was with my resolution-measurements on Bertele’s first Ernostar 100mm f/2.0 from 1923 (a four-element-design WITHOUT COATING!). Compared to the legendary Leitz Apo-Macro-Elmarit 100mm f/2.8 from 1987, this lens achieved 98% of the resolution in the center – but only in the center! See my Ernostar-Bog-Article here. (This was the very first report in my photo-blog …)

So, it is not really surprising, what Fig. 4 is telling us: all top-notch lenses show a very high resolution level in the image center since the invention of the retrofocus wideangle design in the 1950s – and they are all on the about same level – though being historical lenses with up to 65 years of age on their back! The reason for that result is, of couse, that only legendary lenses of all brands are taken into the comparison! Maybe the Takumar-lens happens to be one of the weaker examples …

The Olympus OM 24mm f/3.5 „shift“ drops down somewhat against its neighbours. That is no quality issue: this lens has an image-circle diameter of 57mm for up to 10 mm shift! It came out 1984 long before Canon brought out its famous tilt-shift-lenses … Look at the corner-resolution result of this lens in Fig. 5 – it resolves extremely even over its FoV!

in this graph I marked two horizontal lines: one for the resolution of 2.000 LP/PH (linepairs per picture height), corresponding to the resolution of a 24 MP-sensor, which today is the de-facto-standard for  modern digicams. It normally has 4.000 by 6.000  pixels – and 4.000 pixels in the picture height, corresponding to 2.000 Linepairs. At the same time it is just (+15%) above the 21 MP which I estimate for the resolution of modern analogue (general purpose) film emulsions.

The other (upper) horizontal line marks the 3.184 LP/PH Nyquist-frequency of the Sensor in the Sony A7R4-digicam. This is physically the limiting resolution-value for the camera itself. Today, however, the software-algorithms in the camaras can generate structures in the picture, which are typically 15 – 20% higher in resolution, compared to the Nyquist-frequency. And they do this without creating an artificially looking „oversharpened“ picture! Good job!

This means:

All the legendary historical 24/25mm-retrofocus-lenses for SLR-cameras do out-resolve the modern 24 MP-Digicams in the center – mostly even with open aperture! And many of these lenses even come very close to (or exceed) the Nyquist-Frequency of my 60,2 MP digital camera.

Among the historical lenses two examples peek out a little bit (they peek out much more in the graph for the corner-resolution!):

The legendary 1959 Topcor 2,5cm f/3.5 exceeds the Nyquist-frequency of 3.184 LP/PH – and stopped down to f11 it is in the center the highest resolving of my 24/25mm-lenses until today. Together with the tremendous result of its corner-resolution it is one of the exceptional lenses, which I call my „UNICORNS„. Until today, I have not found any explanation for the astonishing early level of performance of this lens – how could that have been achieved? (15 years before the next-best Olympus-lens!) – and who did it? – and where did this person go afterwards, when Topcons innovative power faded out, to bring in her/his inginuity? (… to Olympus?). (This observation refers to other early Topcor-lenses al well!)

The other unicorn peeking out here is the Olympus OM 24 mm f/2.0 of 1973. In my lens-collection it is exceeded only by the 40 years younger Zeiss Batis 25mm f/2.0.

Referring to the zoom-lenses (set at FL 24mm) in this test: I just was curious, where the modern zooms would stand in such a comparison. We learn that the 1kg-Monster-Tokina 24-70mm zoom at 24mm has one of the best results – even at f/2.8 … in the center of the picture.

At the end of the line-up of 21 lenses I put the Fujinon-Zoom 32-64mm f/4 at 32 mm on the Fujifilm GFX100 (33x44mm – 102 MP), which corresponds to FL 26mm on „full-frame 35mm“. This shows, that for an essentially higher resolution in the picture-center, we today have to go to a larger sensor-format.

3.2 Corner-resolution:

Fig. 5 contains the important informations of this comparison-test. It shows, that step by step all the improvements in innovative design, glass-formulations and aspherical surface-generation were needed to bring finally the corner-resolution of the picture up on par with the center resolution at 24mm focal length, which is possible today – but only with the use of aspherical lens-elements!

In the graph for the corner-resolution I have added a third horizontal line, which marks the resolution at 50 Lines/mm – corresponding to 600 LP/PH. This is needed to judge the corner-resolution of the early historical lenses.

In the 1960s a wideangle-lens was rated „very good“, when it achieved a resolution of 40 Lines/mm (Modern Photography and others). I have written an article about this already here (in German).  Open aperture most super-wideangle-lense started open aperture in the range of 26 to 32 L/mm in the 1950s and 60s. Stopped down practically all the tested historical lenses surpassed the 40 L/mm-limit.

From 1958 on (ENNA) the stop-down corner-resolution rises continualy (with the exception of the two „unicorns“, already identified in Fig.4) until end of the 1970s,  it arrives close to the 2.000 LP/PH-level, which means: from now on the top-notch-lenses out-perform standard analogue fine-grain film (1977 Nikkor and 1984 Olympus). This last step was then achieved by the use of extraordinary dispersion glass-types.

The two „unicorns“ in this test arrive much earlier at this level: the Topcor 2,5cm f/3.5 out-performs analogue film already in 1959 and the 1973 Olympus OM 24mm f/2.0 exceeds this and comes close to todays modern aspherical lenses.

The modern aspherical prime-lenses are represented in my test by two very different samples:

There is the 23mm f/4 Fujinon, which originally is a GFX-lens – but in this test it is measured in the 24x36mm-Mode also with 60.2 MP on the GFX100, showing the state of the art for these modern aspherical lenses.

Just as I made my measurements for this test, the SIGMA i-Series 24mm f/3.5 arrived as a representative of a new thinking: no „impressive“ technical data   – but (hopefully) impressive preformance instead. The result shows: it achieves reference status on a 60.2 MP-sensor with corner-resolution at 85-95% of center-resolution, plus zero-distortion, zero-CA and very close focussing!

Also great news: modern zooms like the Sigma G 12-24mm f/4 – measured at 24mm – arrive now at this level of prime-lenses also in the corners!

As I had no samples of the early historical aspherical lenses in this test, we can not see, in which steps the aspherical lens surfaces moved the wideangle-performance in the picture-corners to the present level.

Maybe this gap can be filled out in some future times.

NOTE 1 – All resolution-values, which are published in this article, refer to MTF30 – what means: the point on the MTF-curve (see Fig. 7), which hits the 30% contrast value.

NOTE 2 – in Part II of this Article I will share some more informations about each individual lens (including pictures, MTF-curves and  lens-schemes).

Appendix: Method of measurement and definition of results

I use the set-up and software by IMATEST with the original IMATEST-Target. I use the large SFRplus-Setup-Image with a physical hight of 783mm bar-to-bar vertically. The distance from target to lens-flange is 0,97 meters. In this area 46 targets are analysed and I share MFT30-weighted-mean-resolution-values (all-over, center and corner), edge-sharpness, linear distortion and maximum lateral CA-values.

Resolution-values are given in Line-Pairs per Picture Height (LP/PH) – where the picture-height is always 24mm. Edge-sharpness is given in pixels (width 3,77 µm).

#TestChart_Angén90f2,5_f2,5
Fig. 6: IMATEST test-target 783mm-bar-to-bar distance. Resolution is NOT measured in the small concentric targets, but at the outside-edges of the black boxes, which are tilted b ca. 5 degrees – source: fotosaurier.

For the measurement I used a SONY A7Rm4 with 60,2 MP-resolution which has a pixel-width of 3,77 µm. The theoretical resolution-limit of the sensor is 3.184 LP/PH (Nyquist Frequency).

The camera setting is used basic as delivered from factory at ISO100 and exposure-compensation of -0.7 stops, using out-of-camera JPEGs. All measurements are made with the identical camera-body (which is important for a precise comparison: I have used one other (earlier) body of this model in comparison, which gave resolution-values between 50 and 200 LP/PH lower than my own camera-body). The repeatability with this method I estimate at 2-2.5%, using ALWAYS manual focusing on the lens with maximum focusing enlargement (11.9-fold) in the camera-viewing-system. Measurement is repeated with re-focusing until a stable maximum resolution at open-aperture of the lens is found and then pictures of the resolution-target are taken with the focussing made wide open for all full down-stops of each lens.

Edge profile (edge-sharpness) is the width of the rise from 10% to 90% intensity at a dark-bright edge in the test target – measured in pixel (width 3,77 with the camera used) – Example shown here for the latest 24mm-prime-lens SIGMA i-Series 24mm f/3,5 – at open aperture f/3,5:

Edge+MFT_Sigma24f3,5
Fig. 7: Edge-profile (top) and MTF-curve (bottom) from the IMATEST software – here the perfect graphs for the brand new Sigma 24mm f/3.5 – at open aperture. I will publish these Curves for all the lenses in PART II of this article – source: fotosaurier

Cromatic Aberration (lateral in the picture-plane) is also measured in pixel separate for red against green and blue against green over the full picture field – in the spread-sheet I note the maximum value, which is in most cases for blue and for most historical lenses in the corners of the picture – sometimes however in the intermediate area.

For more details of testing read my special blog-Article here.

Copyright: Herbert Börger

Berlin, March/April 2021

Katadioptrische Foto-Objektive – Teil III

Teil III: Katadioptrische Foto-Objektive von 1946 – heute.

(Teil I finden Sie hierTeil II hier.)

Die Erkenntnisse aus Teil II führen zu dem Schluß, dass für die ab den 1950er Jahren aufkommenden katadioptrischen Foto-Objektive aus den vielfältigen, bereits für Astro-Anwendungen bekannten „katadioptrischen Dialyten“ (Brachymediale) abgeleitet wurden, von denen einige schon bis zu 150 Jahre bekannt waren und unter denen Maksutov eine spezielle Variante ist.

Eine kurze Geschichte der Katadioptrischen Foto-Objektive:

Mit dem starken Aufkommen der Spiegel-Linsen-Objektive in den 1960-70er Jahren bildeten sich spezielle Konstruktionsmerkmale heraus, die in dieser Form bei astronomischen Fernrohren meist nicht zu finden sind:

a) Außer der Tatsache, dass die Foto-Optiken sehr robust und hermetisch dicht gebaut sind, wurde zunehmend auf die Bohrung im Primärspiegel verzichtet! Das bedeutet, dass die Strahlen, die vom Sekundär-Spiegel zurück geworfen werden, nicht mehr durch eine Öffnung im Hauptspiegel zur Kamera bzw. Filmebene gelangen, sondern durch einen unverspiegelten zentralen Bereich der Spiegelfläche durch das Glas des Spiegelkörpers treten.

Das bedeutet, dass der Innenbereich der Optik zwischen den beiden Spiegeln noch besser hermetisch abgeschlossen ist. Es bedeutet gleichzeitig, dass der zentrale Bereich des Spiegelkörpers auch noch als brechendes Linsenelement im Strahlengang einbezogen ist. Dieser Bereich bildet dann oft zusammen mit 1-3 weiteren Linsen den Sub-Apertur-Korrektor im Strahlengang nach dem Sekundärspiegel. Er muss aus Linsen-Glas allerhöchster Güte bestehen, da dieser Bereich des Hauptspiegels – im Falle eines Mangin-Spiegels – dreimal von jedem Lichtstrahl durchlaufen wird!

b) Immer häufiger treten nach 1965 Mangin-Spiegel auf, was ja der Grundkonfiguration des Hamilton-Teleskopes entspricht. Zuerst finden sich Primärspiegel als Mangin-Typ, bald auch beim Sekundärspiegel bzw. in beiden Positionen gleichzeitig oder auch nur beim Sekundärspiegel. Wie wir oben gesehen haben (Hamilton-Teleskop) ist der Mangin-Spiegel bereits ein Grund-Element des kadadioptrischen Dialyts – für sich genommen ist er meines Wissens nie als Teleskop oder Astrokamera verwendet worden.

Bild 1: Mangin-Spiegel – Quelle: Wikipedia – Autor: not known – https://creativecommons.org/licenses/by-sa/3.0/

Neben der Wirkung als Element der optischen Rechnung liefert der Mangin-Spiegel zwei weitere Vorteile für das Foto-Objektiv:

  • Die an der polierten Glasfläche anliegende reflektierende Spiegeloberfläche ist in der Mikro-Oberflächenstruktur wesentlich glatter als eine aufgedampfte Aluminium-Schicht auf ihrer „offenen“ Seite, die auch noch mit einer transparenten Schutzschicht (meistens Si02) überzogen werden muss.
  • Die Verspiegelungs-Schicht ist gegen den Zutritt von korrosiven Gasen, Feuchtigkeit etc. perfekt geschützt und behält langfristig seine uneingeschränkte Wirkung. Dies alleine wäre schon ein ausreicheder Grund, um diese Bauweise zu bevorzugen!

c) Foto-Objektive katadioptrischer Bauart benötigen zur Abschirmung gegen Falschlicht rohrförmige Blenden um den Zentralen Strahlen-Durchlass im Zentrum des Primärspiegels (nach vorne in Richtung des Sekundärspiegels) bzw. um den Sekundärspiegel herum (in Richtung Hauptspiegel), um die Kamera vor einfallendem Falschlicht zu wchützen. Auf dem folgenden Linsenschnitt sind die Tubus-Blenden und das Problem des Falschlichtes gut zu erkennen:

OM500_f:8

Bild 2: Linsenschnitt mit Abschirmtubus-Blenden gegen „Falschlicht“am Olympus Zuiko Reflex 500mm f/8 (in diesem Bild ist der Lichteintritt rechts!) – Quelle: Olympus Produktbeschreibungs- und Spezifikationsdatenblatt zum Objektiv

An diesem Bild kann man gut erkennen, dass ohne diese beiden Blenden Lichtstrahlen durch die ringförmige Apertur-Öffnung (rechts) direkt und ohne Reflexion an den Spiegeln auf das Zentrum des Hauptspielgels und damit auch in die Kamera gelangen könnten! Eine Gegenlichtblende vor dem Objektiv kann das nur dann sicher verhindern, wenn die Gegenlichtblende extrem lang wäre – was natürlich dem Objektiv-Konzept widerspricht …

Die Existenz dieser rohrförmigen Blenden im zentralen Bereich hat Auswirkungen auf die sog. Obstruktion – also die Abschattung der Lichtstrahlen im Zentrum der Apertur:

Bei Strahlenbündeln, die vom Bildfeldrand schräg in die Optik einfallen, werfen die Tubusblenden einen Schatten auf den Hauptspiegel. In der Folge ist nicht mehr die gesamte Ringförmige Spiegelfläche „aktiv“. Sie ist in der Breite des Blendentubus unterbrochen. Man kann das bei geeigneter Bildstruktur an den außerfokalen Apertur-Ringbildern von Lichtreflexen sehen, wie folgend in dem absichtlich unscharf gestellten Aufnahme des Hausdaches gut zu erkennen ist:

DSC06249_A7r4_OM500f8_Ringe_blog

Bild 3:Tubusblenden-Schatten“ bei den außerfokalen Unschärferingen im Randbereich mit dem Olympus OM Zuiko Reflex 500mm f/8: unten-links und -rechts sieht man die kleinen „Packman-Ringe“ – die Öffnung weist zum Bildzentrum hin. – Quelle: fotosaurier

d) Die große Korrektor-Linse in der Lichteintritts-Apertur dient immer auch gleichzeitig als Tragstruktur für den Sekundärspiegel. Wie im Teil I ausführlich beschrieben wurde, führt die „Obstruktion“ durch den Sekundärspiegel im Strahlengang zu einer Kontrastverringerung des Beugungsbildes 1. Ordnung. Aber wenigstens werden durch das Fehlen von Tragspinnen die dadurch verursachten Beugungs-Spikes in den Bildern einer Punktlichtquelle vermieden, wie sie beim normalen Newton und Cassegrain auftreten.

Meine persönlichen MEILENSTEINE katadioptrischer Foto-Objektive (CATs):

Vorbemerkung: die Einordnung bestimmter Objektive als „Meilenstein“, die ich hier vornehme, ist rein SUBJEKTIV und basiert auf meinem – begrenzten – Wissen bzw. meiner Erfahrung. Mir ist bewusst, dass andere Fotografen und Beobachter zu etwas anderen Schlüssen kommen können, die ihrer eigenen Erfahrung entsprechen.

An dieser Stelle möchte ich noch einmal ins Gedächtnis rufen, dass in den 1950er bis 70er Jahren gegenüber „langen“ Teleobjektiven (>200mm Brennweite) nicht nur Kompaktheit (Baulänge) und geringes Gewicht für die „CATs“ sprach, sondern vor allem die Freiheit von Farbfehlern (Chromatische Aberration, „CA“) – im Verhältnis zum Preis! Es gab zwar in den 1970ern bereits die ersten farbreinen Telekanonen mit Fluorid-Linsen – aber zu einem extrem hohen Preis unter Verwendung eines sehr empfindlichen Materials. Den Preis konnten/wollten sich sicher wenige Amateurfotografen leisten. So bin ich überzeugt, dass die „Blüte“ der katadioptrischen Teleobjektive hauptsächlich vom Amateur-Segment getragen war.

Darüber, warum die katadioptrische Objektivbauform fast völlig wieder verschwunden ist,  werde ich am Ende dieses Artikels einige (begründete) Vermutungen anstellen.

Hier nun mein kurzer Überblick auf die Zeitskala und die Entstehungsgeschichte geschlossener katadioptrischer Systeme, die als Foto-Objektive geeignet waren oder spezifisch dafür gebaut wurden.

Ich führe hier auch die mir bekannte Grundlagenentwicklungen ebenfalls im Zeitstrahl mit auf, damit die zeitliche Dimension mit einem Blick sichtbar wird.

Ich führe dann Foto-Objektive auf, die aus meiner Sicht Meilensteine der Entwicklung solcher Optiken darstellen. Dies ist keine vollständige Beschreibung dieses Objektiv-Segmentes! Ich versuche derzeit Informationen über alle jemals gelieferten Photo-CATs zu sammeln und hoffe in einigen Monaten eine fast vollständige Liste veröffentlichen zu können.

Fast alle bekannten katadioptrischen Teleobjektive wurden für das Kleinbildformat gerechnet. Einige wenige zeichneten Mittelformat 6×6 oder 6×7 aus: Carl Zeiss Jena Spiegelobjektive 500mm und 1.000mm, Kilfitt 500mm und 1.000mm und Pentax 6×7 1.000mm f8 – soweit mir bekannt ist.

1814

Grundlagen-Erfindung (Astronomie) des Katadioptrischen Dialyts (auch „Brachymedial“ genannt) durch Hamilton und darauf folgend eine  große Reihe von Varianten und Weiterentwicklungen.

Hier der Link zu Hamiltons GB-Patent Nr. 3781.

Bis in jüngerer Zeit hat eine italienische Firma tatsächlich noch Hamilton-Teleskope/-Kameras für astronomische Zwecke geliefert (Ceravolo).

1930

Grundlagen-Erfindung (Astronomie) der Schmidt-Korrektor-Platte – daraus entstanden Schmidt-Kamera und Schmidt-Cassegrain-Teleskop

1940/41

Grundlagen-Erfindung (Astronomie) des Maksutov-Korrektor-Meniskuslinse – daraus entstanden das Maksutov-Cassegrain-Teleskop – genau betrachtet ist es aber eine Sonderform des katadioptrischen Dialyts.

ab 1945

Maksutov-Cassegrain 3,5″ f/12-Teleskope – Lieferung großer Stückzahl des Teleskops an sowjetische Schulen, gebaut (anfangs) vermutlich in Nowosibirsk. Wenn Sie wissen wollen, wie das Schul-Teleskop aussah, folgen sie bitte diesem Link zu einer sehr kompakten Biografie Maksutovs auf Prabook. Dort sehen Sie ein Bild von D. Maksutov mit „seinem“ Schul-Teleskop vor ihm auf dem Schreibtisch. Mit ähnlicher Spezifikation wurde es in Polen als „PZO“ hergestellt und in der DDR von Zeiss als „Telementor„. Diese Geräte wurden auch (da sie Devisen brachten!) in den Westen verkauft.

Bemerkenswert ist, dass die Motivation, ein extrem robustes und haltbares sowie wartungsarmes Fernrohr für Schulen zu schaffen, bei Dimitri Maksutov zu der ursprünglichen Idee für das Meniskus-Tesleskop-Design führte. Ich sehe darin ein Beispiel, dass auch das Streben nach Gemeinwohl zu hervorragenden Innovationen führen kann!

In diesem Link zu „cloudynights.com“ fand ich weitere interessante Fotos des polnischen PZO-Instruments.

ab 1954

QUESTAR Maksutov-Cassegrain-Teleskop 3,5″ (in Großserie gefertigt bis heute)

Klassisches Maksutov-Cassegrain, Brennweite 1280mm f/14.4 (Spezifikation ab 1961) – wurde und wird auch als Teleskop-Tubus („Field-Model“ oder „Birder“) mit Okular- oder Kameraanschluss geliefert.

Ein Kult-Klassiker der Amateur-Astronomie. Aber auch die NASA soll einige beschafft haben …

Bild 4: Questar-3,5″-Teleskop mit ausgezogener Taukappe – Quelle Wikipedia, Autor:Hmaag – https://creativecommons.org/licenses/by-sa/3.0

ab 1936 bis in die 1960er Jahre

wurden mindestens in Deutschland (Zeiss), Japan (Nikon) und Russland (GOI) und USA (Kodak) große semi-transportable (meist katadioptrische) Spiegelobjektive für militärische und satellitengestützte Anwendungen entwickelt. Diese waren ausschließlich vom Maksutov-Typ und hatten Brennweiten von 1.800mm – 8.200mm. Viele Informationen dazu gibt es im Übersichtsartikel von Marco Cavina in diesem Link. Auf diese umfangreichen Erfahrungen konnten sich die Optik-Unternehmen dann nach dem 2. Weltkrieg bei der Entwicklung von katadioptrischen Wechselobjektiven für Spiegelreflex-Kameras stützen.

vor 1958

Erste Maksutov-Cassegrain-Teleobjektive für SLR von LZSO, Sowjetunion: MTO 1.000mm f/10.5  und MTO 500mm f8 – erhielten eine Goldmedallie auf der EXPO in Brüssel 1958.

Ich weiß nicht, wann genau diese Maksutov-Cassegrain auf den Foto-Markt gebracht wurden. Es muss noch unter der strengen Überwachung von Dimitri Maksutov selbst gewesen sein, der ja bis 1964 lebte. Gibt es Leser, die da weiter helfen können?

IMG_0939_MTO500f8

Bild 5a: MTO-500mm f/8 – Quelle: fotosaurier

IMG_0943_MTO1000f10

Bild 5b: MTO-1.000mm f/10 – Quelle: fotosaurier

Das archaische Design und die solide Bauweise führten dazu, dass die Optiken (bis heute) von Fotoamateuren liebevoll als „Russentonnen“ bezeichnet werden. Herstellerbezeichnungen waren und sind MTO, Arsenal, Rubinar. Nicht immer waren die Optiken leider in der Qualität konstantd, was oft an verspannt eingebauten Spiegeln gelegen haben soll. Ein Bericht dazu (Dr. Wolfgang Strickling) finden Sie hier.

1959/1961Nikon bringt nach den russischen MTOs bereits 1959 sein erstes CAT mit ehrgeizigen Daten auf den Markt, das Reflex-Nikkor 1.000mm f/6.3 – und bereits 1961 folgt ein Reflex-Nikkor 500mm f/5. Ab den frühen 1970er bis in die 2000er Jahre bietet dann Nikon kontinuierlich das „Reflex-Nikkor-Trio“ 500 f/8 + 1.000 f/11 . 2.000 f/11 an. Viele Details findet man in dem Artikel von Marco Cavina – für die Liebhaber der italienischen Sprache! Die 2.000mm f11 wurden demnach alle von 1971 bis 1975 in zwei Versionen gefertigt. Das eklärt wohl zur Genüge, warum Ihnen das 2.000er CAT so selten in „freier Wildbahn“ begegnet.

Refl-NikkorC_IMG_0912

Bild 6: Reflex-Nikkor C 500mm f/8 – Quelle: fotosaurier

1961Carl Zeiss Jena

stellt das katadioptrische „Spiegelobjektiv“ 500mm f4,0 auf der Leipziger Messe vor (Entwickelt ab 1955 von Dr. Harry Zöllner, W. Dannenberg. (Kurze Zeit später kommt auch ein Spiegelobjektiv 1.000mm f5,6, die sog. „Stasi-Kanone“, hinzu). Die Optiken sind für Mittelformat 6 x 6 gerechnet und geliefert worden!

Frei zugängliche Darstellungen von Linsenschnitt, Auflösung und MTF-Kurven stehen mir bisher zu diesen Optiken nicht zur Verfügung. Allerdings gibt es einen fabelhaften synoptischen Artikel von Marco Cavina, in dem das Jena-Spiegelobjektiv 500mm f/4.0 und das Mirotar f/4.5 im Detail ausführlich beschrieben und verglichen werden.

Bereits 1941 hatten bei Zeiss die Konstrukteure Robert Richter und Hermann Slevogt ein CAT-System (Richter-Slevogt-Teleskop) entwickelt und angemeldet, das dem kurz vorher in GB angemeldeten „Houghton-Teleskop“ (s. Teil II) ähnelt. Wahrscheinlich wussten beide Gruppen damals im Krieg nichts voneinander.

Auf diese Entwicklungen von 1941 geht offensichtlich dieses Carl Zeiss Jena-Spiegelobjektiv zurück.

Cavina äußert in seinem Artikel die Vermutung, dass die optische Leistung des Jena-Objektivs nicht an das folgend beschriebene, kurz danach heraus gekommene Objektiv von Zeiss Oberkochen heran kommt, da es vermutlich als IR-Fernobjektiv für Aufnahmen auf IR-Schwarzweißfilm entwickelt wurde.

In dem Blog „Zeissmania“ (Teil II) finden sich einige Aufnahmen,die der Autor selbst mit dem Zeiss Jena 1.000 f/5.6 gemacht hat (Website der Burgenländischen Amateurastronomen BAA).

1963Zeiss Oberkochen (West)

stellt das MIROTAR 500mm f/4,5 vor und fertigt 200 Exemplare für Contarex.  Zeiss-Konstrukteure sind Helmut Knutti und Alfred Opitz. Später wird noch einmal ein kleines Los speziell mit dem Kyocera-Contax-Anschluss (c/y) gefertigt. Etliche nagelneue Contarex-Objektive wurden (lt. Marco Cavina) auch im Werk auf  c/y umgerüstet. Ab 1975 liefert Zeiss ein MIROTAR 1.000mm f5,6 und fertigt 20 Exemplare. (Alle Mirotare sind für Kleinbild-Format gerechnet.)

Mirotar 500mm f4,5_strahl

Bild 7: Linsenschnitt des Zeiss Mirotar 500mm f4.5 – Maksutov-Design mit zwei Korrektur-Menisken aber noch kein Mangin-Spiegel – Quelle: Datenblatt Fa. Zeiss

Spezifikations-Datenblätter von Zeiss mit Linsenschnitten finden Sie hier und hier.

Dies ist ein Vertreter der „Maksutov-Fraktion“, noch mit durchbohrtem Primärspiegel.

Zeiss verwendet hier noch keinen Mangin-Spiegel! Für das benötigte große Bildfeld des Kleinbild-Formates und dem großen Öffnungsverhältnis von f/5.6 ist ein einfacher Maksutov-Meniskus allerdings nicht ausreichend als Korrektor bei höchsten Ansprüchen. Daher verwendet Zeiss davor noch einen zweiten (umgekehrten) und sehr dicken Meniskus – eine Lösung, die auch Maksutov selbst für die großen astronomischen MAK-Kameras in Chile und im Südkaukasus bereits verwendet hatte.

Das Mirotar 500mm f4.5 gilt als Referenz-CAT im Kleinbild-Bereich. Im Artikel von Marco Cavina ist die MTF-Kurve – im Vergleich mit anderen APO-Objektiven und dem 500mm f/8 von Zeiss – dargestellt: sie ist allen anderen Optiken weit überlegen.

vor 1964Canon

stellte für die Olympiade in Tokyo drei CATs der Superlative zur Verfügung, die wohl weniger in den Amateurfotografen-Sektor passten, aber umso bemerkenswerter sind:

  • Canon TV-800 f3.8
  • Canon TV-2.000mm f11
  • Canon TV- 5.200mm f14

Sie haben richtig gelesen – kein Druckfehler! Ich habe keine Ahnung, in welchen“Stückzahlen“ Canon diese Optiken gefertigt hat. Sie wurden also offensichtlich mit Vidicon für das Fernsehen eingesetzt. Hier findet man in einem weiteren Artikel von Marco Cavina (auf Italienisch) mehr Informationen darüber.

1965 – Der US-Photodistributor „Spiratone

beginnt ein Maksutov-Cassegrain-Objektiv 500mm f/8 – gefertigt bei LZOS in der Sowjetunion – im Westen zu liefern. Es bekommt in Fotozeitschriften sehr gute Testergebnisse. Später (jedenfalls VOR 1983) kommt ein katadioptrisches Spiegelobjektiv 300mm f5.6 hinzu.

1965 bis 1980 – dies ist die Periode,

in der JEDER Kamera- oder Objektiv-Hersteller ein oder mehrere Foto-CATs heraus brachte.

Binnen kürzester Zeit war es Standard, dass die Original-Hersteller (Nikon, Canon, Pentax, Minolta, Yashica) mindestens zwei CATs in seinem Programm anbot: alle hatten ein 500mm f/8 CAT zu bieten, sowie am langen Ende entweder 800mm f/8 (Minolta) oder 1.000mm f/10 oder f/11. Es kamen auch einige 1.200mm- und  2.000mm-Optiken auf den Markt. Wie schon gesagt, arbeite ich an einer möglichst vollständigen Übersicht. Pentax  brachte zusätzlich zu seiner Kleinbild-Linie ein Reflex Takumar 1.000mm f/8 für Mittelformat (die Pentax 67) heraus. Das gab es meines Wissens sonst nur bei Zeiss Jena und Kilfitt.

Eine Ausnahme bildete Olympus, wo man zögerte um erst 1982 ein einziges aber sehr kompaktes Zuiko Reflex 500mm f/8 heraus zu bringen (s.u.).

Die Leica CATs „MR-Telyt-R“ waren Minolta-Objektive in einem Leica-Design.

Die „echten“ Fremdobjektiv-Hersteller („3rd-party-lenses“) reagierten ebenfalls sehr schnell: anscheinend allen voran SIGMA, die sehr früh (Datum?) ein super-lichtstarkes 500mm f/4.0 heraus brachten. Ich fand einen Bericht eines amerikanischen Fotofreundes, der diese Optik in einem völlig  verwahhrlosten Zustand  fand und mit seinen eigenen Bordmitteln „aufarbeitete“ (Respekt!). Schließlich stellte er fest, dass es nicht so schlecht gewesen sein kann.

Sigma hat dann über die Jahrzehnte den größten „Zoo“ von katadioptrischen Brennweiten auf den Markt gebracht. Dabei auch die eher ungewöhnlichen Brennweiten 400mm und 600 mm. Ich hatte einmal ein 600er Sigma-CAT, das mich aber nicht voll überzeugen konnte.

Dabei waren natürlich auch Tokina und Tamron mit eigenen katadioptrischen Designs – wobei man feststellen muss, dass die 1979/81 erschienenen Tamron 500mm f/8 und 350mm f/5.6 an die Spitzengruppe der (späteren!) Objektive von Olympus und Zeiss heran kamen. Das Tamron 500 f/8 CAT war sogar noch etwas kürzer und leichter als das 1982 erschienene Olympus 500 f/8. Bild und Linsenschnitt hier auf der Adaptall-2-Website. Beim 350er Tamron ist die aufschraubbare Gegenlichtblende (unbedingt benutzen!) praktisch genau so lang, wie das Objektiv selbst.

Makinon war ein weiterer echter japanischer Fremdobjektiv-Hersteller mit meist recht guten Produkten.

In Europa/Deutschland gab es nun ab 1972 keinen ernst zu nehmenden SLR-Hersteller mehr. Es gab allerdings noch berühmte Fremdobjektiv-Hersteller, allen voran Kilfitt/Zoomar. Legendär ist das Kilfitt-Zoomar Sports-Reflectar 500mm f/5.6 (Ende der 1960er), detailliert beschrieben hier auf der Pentaconsix-Website – und hier das 1970 vorgestellte Kilfitt/Zoomar Sports-Reflectar 1.000mm f/8 beide gerechnet für Mittelformat und mit dem Kilfitt WE-Adaptersystem auch an vielen Kameras verwendbar.

Eine unübersehbare Menge von Handelsmarken boten eine große Zahl von CAT-Varianten sehr billig an. Meines Wissens war 1965 zeitlich der früheste Spiratone, USA (siehe oben) – bei dem man auch wusste, wer der Hersteller war (MTO bzw. LZSO in Russland). Bei den anderen habe ich keine Ahnung, wer der Hersteller gewesen sein kann. Mir ist – ausser dem besagten Spiratone – keines bekann, das durch eine besonders hohe optische Qualität aufgefallen wäre.

1975 VivitarSeries1 Solid CAT 800mm f11 und 600mm f8

DSCF1516_SolidCat_an_NEX

Bild 8: Vivitar Series 1 Solid Cat 800mm f/11 an der Sony A7RIV (ohne Gegenlichtblende)- Quelle: fotosaurier

Anfang der 1970er Jahre las ich über ein neu veröffentlichtes Patent von Perkin Elmer über eine sogenannte „Solid Catadioptric Lens“ – d.h. ein Spiegellinsen-Objektiv, das quasi „aus einem einzigen Glaszylinder“ bestehen sollte (gelesen möglicherweise bei Herbert Keplers „Kepler on the SLR“ in Modern Photography?):

Linsenschnitt_SolidCat_Pat3,547,525

Bild 9: Skizze aus der Patent-Anmeldung Perkin Elmer „Solid-Cat“ von 1967, erteilt 1970. Quelle: US-Patentanmeldung US3547525A

Diese Optik sollte extrem kurz bauen – ich war begeistert. Einige Jahre später erfuhr ich schließlich in der „Modern Photography“, dass dieses Objektiv als Vivitar Series 1 Optik 800mm f/11 tatsächlich am Markt erschienen sei.

VS1_SolidCat_800f11_pat_grau

Bild 10: Linsenschnitt VivitarSeries1 Solid-Cat 800mm f/11. Er liegt erstaunlich nahe am ursprünglichen Entwurf! – Quelle: Patent Perkin Elmer Patent Patent application

Da war sofort klar, dass ich das irgendwann haben müßte – was dann noch einige Jahre gedauert hat… Über die Geschichte der Vivitar Series 1-Optiken wird irgendwann separat zu berichten sein. Für uns waren diese Objektive damals in den 1970er Jahren eine Offenbarung – und die meisten davon besitze ich noch bis heute!

Die beiden Solid-Cats (600mm und 800mm) bauen extrem kurz – sind aber deutlich schwerer als die sonst gängigen CATs am Markt.

Erst Jahrzehnte später stieß ich dann auf die spezielle Geschichte dieses Objektivs, das mich so fasziniert hat. in den Archiven der „SPIE“ findet sie sich in Form eines Interviews mit dem Konstrukteur dieses Objektivs, Juan L. Rayces (1918 – 2009). Darin enthalten auch ein Foto des Konstrukteurs mit seinem Objektiv auf dem Stativ – am belebten Strand! (Heute wohl nicht mehr denkbar…)

Auch Perkin Elmer lieferte Exemplare diese Objektivs unter der eigenen Marke (und auch Spezialausführungen an die NASA).

BildCat01

Bild 11: Solid Cat-Ausführung 800mm f/11 unter Perkin-Elmer-Eigenmarke – Quelle: fotosaurier

Was unter der Marke „Vivitar Series 1“ wirklich geschah: die Fertigung lief 1975 an – wurde aber nach 3 Monaten wieder gestoppt, weil Vivitar feststellte, dass es für ein Amateur-Objektiv zu teuer war. Daher gibt es wohl tatsächlich nur eine relativ geringe Stückzahl von Objektiven weltweit (obwohl es damals heftig – auch in Deutschland – beworben wurde).

1978Minolta RF Rokkor 250mm f5.6

Linsenschnitt_Minolta_RF250

Bild 12: Linsenschnitt Minolta RF Rokkor-X 250mm f/5.6 – Quelle: Datenblatt Minolta

In Beschreibungen werden die Mangin-Spiegel of als „Innovativer Schritt“ an sich hervorgehoben – was ja, wenn man von katadioptrischen Dialyt (von 1814!) ausgeht, nicht richtig ist. Auch ist die Bezeichnung eines „Rumak“, die ich schon gelesen habe, nicht wirklich zutreffend: Rumak würde einen Maksutov-Typen bezeichnen, der – nach Rutten als Rutten-Maksutov benannt – nicht den verspiegelten Fleck auf der Rückseite des Meniskus als Sekundärspiegel nutzt, sondern einen auf ein Podest auf dem Meniskus montierten Cassegrain-Sekundärspiegel. Aber diese Optik ist überhaupt kein Maksutov-Typ.

Diese Optik hat einfach ein hervorragendes Brachymedial-Design – insbesondere unter Berücksichtigung der kurzen Brennweite und extrem kurzen Baulänge von 58mm (ohne Gegenlichtblende).

Wie bei allen CATs ist die Benutzung der Gegenlichtblende dringend empfohlen!

DSCF1475_MMD250f5,6_blog

Bild 13: Minolta RFx Rokkor 250mm f/5.6 (ohne Gegenlichtblende) – Quelle: fotosaurier

DSCF1491_Vergl_RF-Rokkor_OM50f1,2

Bild 14: Größenvergleich RF Rokkor zu lichtstarkem Normalobjektiv (Olympus OM 50mm f/1.2 – das ist aber das kompakteste unter den f/1.2-Normalobjektiven. Mein heutiges Sony GM-50mm f/1.4 hat das ungefähr 3- bis 4-fache Volumen des RF Rockor …) – Quelle: fotosaurier

Das RF-Rokkor 250mm f/5.6 eröffnete damit Ende der 1970er Jahre noch einmal ein neues Brennweiten-Segment für katadioptrische Objektive mit einem wirklich großen Wurf in jeder Hinsicht – optisch wie geometrisch! Vielleicht lag es auch in der Luft? – umgehend tummelten sich in diesem Segment die Fremdobjektiv-Hersteller („Third-Party“) aber interessanterweise folgte keiner der großen Kamerahersteller Minolta in dieses Segment (meines Wissens …). Ich halte den Brennweitenbereich (250-350) für sehr sinnvoll, da  der „Durchschnitts-Fotoamateur“ mit dem Mmanuell-Fokussieren von 500er-Objektiven schon mal leicht überfordert ist – siehe meine Bemerkungen am Ende des Artikels.

Die Brennweite 250mm hat sich dabei nur einer der Fremdobjektivhersteller mal „zugetraut“. Vertrieben wurde das Produkt wohl nur über Handelsmarken – in Deutschland als „Berolina 250mm f/5.6“ bekannt, anderswo auch unter „Focal“ etc. Mir ist nicht bekannt, wer da der Konstrukteur bzw. Hersteller war. Die optische Qualität ist eher bescheiden und die Optik ist auch wesentlich größer als das RF Rokkor (fast so lang wie das Olympus Reflex 500mm f/8).

Die anderen Optiken lagen alle im Bereich von 300mm (f/4.5 bis f/6.3) oder 350mm f/5.6 (Tamron – sehr gute Optik!) – dabei war sogar ein russischer Maksutov-Typ (Rubinar) und auch Astro-Hersteller wie Celestron haben das probiert. Auch die Handelsmarke Spiratone war hier wieder dabei (viel gelobt!).

1978/79Celestron (Schmidt-Cass.) 750 f/6.3 und Questar (MAK) 700mm f/8

Dies sind Versuche, aus dem Astro-Geräte-Segment heraus reine Foto-Teleobjektive anzubieten (was ja mit dem russischen MTO früher schon mal sehr gut gelungen war – bis heute!).

Celestron  (1978) war das einzige reinrassige Schmidt-Cassegrain-Objektiv, das an den Foto-Markt gebracht wurde. Es verschwand ab 1986 wieder.

Das Questar-Gerät (1979) war als „lichtstarker Maksutov-Typ“ auch nicht lange am Markt.

IMG_0934_Qestar700

Bild 15: CAT-Teleobjektiv „Celestron 700“ 700mm f/8 – Quelle: fotosaurier

Qualitativ hochwertig und hervorragend gebaut – aber der Foto-Markt funktioniert eben anders als die „Astro-Nische“.

1982 – Olympus OM Zuiko Reflex 500mm f/8

DSCF1487_OMreflex500f8_blog

Bild 16: Das kompakte Olympus Zuiko Reflex 500mm f/8 an der „zierlichen“ OM4Ti (Gegenlichtblende eingeschoben) – Quelle: fotosaurier

Ich hebe dieses 500er CAT besonders hervor, weil es praktisch keine Fehler hat – außer dem Fehlen des Stativanschlusses, der allerdings dem Olympus-Konzept widersprochen hätte! Sein auffälligster Vorteil ist der hervorragende Bildkontrast, der das (sehr feinfühlige!) Fokussieren leicht macht – selbst ohne Fokusvergrößerung an der digitalen Systemkamera. Das Bild „springt“ geradezu in die Schärfezone. In mittleren Entfernungen ist die Bildstruktur („Rendering“) – auch des Hintergrundes! – sehr schön. Auch die ausziehbare Gegenlichtblende ist sehr praxisgerecht.

DSC06236_OM500_Astern_blog

Bild 17: Beispiel des schönen Renderings beim Olympus OM Reflex Zuiko 500 f/8 – Quelle: fotosaurier

OM500_f:8

Bild 18: Linsenschnitt Olympus OM Reflex Zuiko 500mm f/8 (Lichteintritt von rechts! – Gegenlichtblende eingeschoben) – Quelle: Datenblatt Olympus

Zusammen mit dem Minolta AF Reflex 500 und dem fast 20 Jahre später erschienenen Mirotar 500mm f/8 ist es das beste 500er-CAT das ich persönlich und praktisch kenne. Beide Spiegel sind Mangin-Spiegel. Das Auffälligste ist, dass hier ALLE optischen Elemente in nur zwei Gruppen um die beiden Spiegel zusammengafasst sind! Es ist das CAT mit der geringsten Zahl von Glas-Luft-Flächen. Ich vermute, dass dies ein Teil des Geheimnisses des hervorragenden Bildkontrastes ist.

Bei meinen jüngsten Messungen mit einer Nyquist-Frequenz des Sensors von 3.168 LP/BH messe ich beim Zuiko-Reflex ca. 1.500 LP/BH (entsprechend 125 Linien/mm) in der Bildmitte – in der äußersten Ecke bei ca. 860 LP/BH. Ich gebe die Auflösungswerte für 30% Kontrast an (wie meistens üblich …) Für die damalige analoge Fotografie waren das Werte, die noch über der praktischen Filmauflösung lagen (zumal mit ISO 400-Filmen – oder nochhöheren ISO-Werten!).

Deutlich kompakter als diese Optik ist meines Wissens nur das Tokina 500mm f/8 – aber das spielt in der optischen Qualität eine Liga darunter. Auch das Tamron 500mm f/8 ist etwas kürzer – man muss aber eine Gegenlichtblende aufschrauben, die fast so lang ist wie das Objektiv selbst!

1982/83Vivitar Series 1 450mm f4.5

Hier ist die Datierung ganz sicher:  Oktober 1982 wurde das Objektiv auf der Photokina in Köln vorgestellt. Ab 1983 wurde es meines Wissens ein Jahr lang gefertigt. Es gibt dazu auch noch einen 2-fach-Telekonverter, der speziell für die Optik gerechnet ist und direkt am T2-Gewinde angeschlossen wird.

Diese Optik hat nichts mit den früher gelieferten Vivitar Series 1 „Solid Cat“ zu tun!(Das war vereinzelt angenommen worden …)

Dies ist die wohl (bisher) exotischste katadioptrische Foto-Optik, die es tatsächlich an den Markt geschafft hat! – Eindeutig ein Fall für  die Rubrik „My Crazy Lenses“ – demnächst hier in diesem Blog

Das Design stammt von der Optik-Designfirma OPCON Associates, die der ehemalige Perkin-Elmer Mitarbeiter Ellis Betensky 1969 mit zwei anderen Partnern (Melvin Kreitzer und Jacob Moskovich) 1969 gegründet hatte – und die bis heute existiert (seit 1996 ohne Betensky).

DSCF1501_VS1_450f4,5_OM4Ti_ROTblog

Bild 19: Vivitar Series 1 450mm f4.5 (Länge 150mm – ohne die Gegenlichtblende) an der Olympus OM – Quelle: fotosaurier

Nach intensiver Suche habe ich schließlich das Patent für dieses katadioptrische Objektiv gefunden: US-Patent 4523816 angemeldet 1983 für Vivitar. Anders als oft zu lesen, ist als Erfinder Melvin Kreitzer eingetragen und nicht nicht Ellis Betensky. Die Bilder „Fig.3 und Fig.4“ sind durch klicken auf „Full Pages“  (am linken Rand) einzusehen.

VS1_450f4,5_USPat4523816_Fig3

Bild 20: Grobe Linsenschnitt-Skizze aus dem US-Patent 4523816 für das Vivitar Series 1 450mm f/4.5 – entspricht sicher nicht in allen details dem endgültig hergestellten Objektiv – es fehlt z.B. die nach vorne abschließende dünne Planglasscheibe (s. FIG-4) – Quelle: US-Patent 4523816

Der EXOT besitzt vier höchst innovative Besonderheiten:

a – Der (sehr dicke!) Front-Korrektor L1 besteht laut Spezifikations-Claims aus PMMA-Kunststoff („Acryl-Glas“).

b – Der Korrektor L1 hat auf der Vorderseite eine asphärische Fläche! … also eine Art „verkappte-Schmidt-Platte“?

c – Das System besitzt eine Innenfokussierung durch Verschiebung der Korrektor-Linsengruppe G2. Dabei ändert sich die Brennweite des Objektivs in Naheinstellung.

d – das vordere Kunststoff-Korrektorelement L1 ist an der Objektiv-Vorderseite durch eine dünne planparallele Glas-Scheibe geschützt (fehlt in Fig.3 – angedeutet nur in Fig.4 des Patentes).

Weitere Informationen zu diesem Objektiv im Artikel in der Reihe „My Crazy Lensesdemnächst.

1989Minolta AF Reflex 500mm f/8

DSCF1523_MAF_AFreflex500_blog

Bild 21: Minolta AF Reflex 500 an der Sony A7RIV (mit Gegenlichtblende) – Quelle: fotosaurier

Minolta AF 500f8

Bild 22: Minolta Autofocus 500mm f/8 – Quelle Minolta Objektiv-Spezifikation

Minolta hat damit – 4 Jahre nach der Einführung der AF-SLR als erster weltweit und bis heute einziger Hersteller – etwas gemacht, was eigentlich als „unmöglich“ galt: Funktion eines zuverlässigen Autofokus bei Blende 8!  Ich hatte das Objektiv an der Dynax 7D und ich benutze es bis heute an der Sony A7RIV (mit Adapter LAEA4)  – das funktioniert hervorragend und sehr schnell auch noch bei schwachem Licht! Das Objektiv wurde auch lange Zeit noch mit dem Sony A-Mount ausgeliefert und ist in anscheinend fast beliebiger Menge und günstig am japanischen Gebrauchtmarkt zu erhalten – in Deutschland eher selten und viel teurer als in Japan!). Es ist auch eine meiner „crazy lenses„. (Bericht folgt in einigen Wochen!)

Der Aufbau benutzt zwei Mangin-Spiegel und ähnelt dem Design des Minolta RF 250mm f/5.6. In der Bildqualität spielt es absolut in der Oberliga – wegen der grundsätzlichen  Fokussier-Schwierigkeiten mit den manuell zu fokussierenden CAT-Objektiven ist der Autofokus für sich in der Praxis ein großer qualitativer Nutzen!

Ich halte es – zusammen mit dem RF Rokkor 250mm f/5.6 – für das unter heutigen Bedingungen an D-SLR und Spiegelloser Systemkamera nützlichste historische CAT – auch frei Hand einsetzbar für „normale Alltagsfotografie“. Die Klasse der manuell fokussierbaren 500er CATs ist sonst doch schon etwas für das Staiv!

1997Zeiss Mirotar (für Contax c/y) 500mm f8

Dies ist das letzte relevante 500er CAT (eines Originalherstellers), das auf den Markt kam – und es ist eines der Besten, das Zeiss nun als „Spätgebärende“ herausbrachte. Allerdings kann man den MFT-Kurven bei Marco Cavina entnehmen, dass es nicht an das überragende Referenzobjektiv 500mm f/4.5 heran reicht. (Ich finde: das ist keine Schande – ca. 800 Gramm treten gegen fast 4 kg an …)

Mirotar 500mm f8

Bild 23: Zeiss Mirotar 500mm f/8 von 1997 – Quelle: Zeiss Datenblatt

Dieses Objektiv hat nun alle Merkmale der „modernen“ CAT-Bauweise: Mangin-Spiegel und nicht durchbohrter Hauptspiegel. Es ist allerdings kein Maksutov-Typ mehr sondern eine Hamilton-Bauweise mit ausgeklügelten Sub-Apertur-Korrektoren. Der Mangin-Primärspiegel ist ungewöhnlich dick! Zusätzlich zu einer ausziehbaren Sonnenblende besaß das Objektiv einen sehr schlank gebauten drehbaren Stativanschluss – es war also in jeder Hinsicht  perfekt.

MIOTAR500f8IMG_0902

Bild 24: Zeiss MIROTAR 500mm f/8 – Quelle: fotosaurier

Anfang der 2000er Jahre erschienen plötzlich viele nagelneue Mirotar-500mm f/8-Objektive zum Preis von 500 EUR im Angebot (unter halbem Listenpreis)! Es ging das Gerücht, dass ein ganzer Container mit diesen Objektiven geraubt worden sei – danach wäre das alles Hehlerware gewesen … Vielleicht hatte aber auch Zeiss nur wieder ein größeres Los vorweg gefertigt und versuchte die Ware rechtzeitig vor der Einstellung der Kyocera-Contax-SLR (2005) los zu werden – es fand also ein radikaler Abverkauf statt? Ich weiß nicht, was wirklich der Grund war – aber ich habe es gekauft. Im Vergleich zum Olympus-CAT habe ich damals festgestellt, dass beide Objektive gleichwertig an der Spitze des Wettbewerber-Feldes liegen (seinerzeit mit Vergleich auf Analog-Film festgestellt). Ich habe dann das Zuiko-CAT behalten, da es kompakter und leichter war. Bei einem Vergleich am aktuellen 63 MP-Digital-Sensor könnte sich heute allerdings herausstellen, dass eines der Objektive doch dem anderen überlegen ist, da unsere Vergleiche auf Analog-Film einen praktischen Grenzwert von ca. 100 Linien/mm besaßen – entsprechend 1.200 Linienpaare/Bildhöhe. Wie schon oben angemerkt liegt das Olympus-CAT am digitalen Sensor bei 1.500 LP/BH.

In der Zeit nach dem Jahr 2.000:

Nachdem Sony als letzter Anbieter das AF Reflex 500 (original Ex-Minolta!) eingestellt hat, gibt es meines Wissens kein CAT-Objektiv eines Original-Herstellers mehr am Markt.

Einige Fremdobjektiv-Hersteller (auch neuere wie Samyang) haben sehr preiswerte CAT-Objektive im Programm. Die weitaus meisten CATs, die heute herum geistern, werden unter Handelsmarken vertrieben. Man sollte von denen nicht zu viel erwarten. Darunter sind auch solche, die schon in den 1980/90er Jahren exakt so geliefert wurden – erkennbar z.B. an der identischen Ausführung der auffälligen Gummierung des Fokussier-Rings.

Gerade vor wenigen Wochen hat allerdings einer der renommierten Fremdobjektiv-Hersteller (Tokina) wieder ein neues CAT mit 400mm f/8 und T2-Anschluß neu auf den Markt gebracht.

Ist das der Beginn einer Renaissance?

Man wird sehen …

Warum sind die katadioptrischen Teleobjektive (CAT) nach der ersten großen „Welle“ (1965-1990) fast wieder verschwunden?

Auffallend ist, dass extrem viele der im Netz angebotenen CATs in ganz hervorragendem Zustand – oft neuwertig – sind. Das könnte bedeuten, dass sie kaum benutzt wurden. Das ist auch meine persönliche Meinung. Eine Ausnahme bilden überdurchschnittlich oft die „Russentonnen“.

a) Im professionellen Bereich wurden die frühen CATs wohl hauptsächlich wegen der farbreinen Abbildung eingesetzt. Dieser Vorteil fiel mit dem Erscheinen der Tele-Objektive mit ED-Glas ab ca. 1982 weg. Allerdings wurde dieses „Versprechen“ der Abwesenheit von Farbfehlern tatsächlich nur von den Spitzen-CATs am Markt eingelöst. Möglicherweise blieb noch der Grund eines federleichten, kompakten „Immer-dabei-Lang-Brennweiters“ erhalten, der für den Fall des Falles hinten in der Reportage-Tasche schlummern durfte.

b) Das manuelle Fokussieren mit den CATs geringer Öffnungsverhältnisse (f/5.6 bis f/11 !) war selbst für erfahrene Manuell-Fokussierer sehr schwierig. Die Hilfsmittel wie Schnittbildindikator oder Mikroprismenring fielen ab f/8 aus – es blieb meist nur das Fokussieren auf dem Mattglasbereich übrig! Bei professionellen Kameras gab es teilweise wechselbare Einstellscheiben für den SLR-Sucher. Aber ehrlich: wer legt sich zwischendrin ins Gras und fummelt eine Einstellscheibe raus und wieder rein …?

Es ist auch festzuhalten, dass mit sehr wenigen Ausnahmen gerade an preislich günstigen CATs das präzise Fokussieren – für das man eigentlich eine Mikrometer-Schraube gebraucht hätte! – sehr schlecht und grob gelöst war. Das dauert dann, wenn man immer wieder vorbei gedreht hatte … oder die Schärfeergebnisse waren eben unterirdisch!

c) Alle CATs waren mehr oder weniger Streulichtempfindlich, wenn man gegen die Sonne fotografierte. Wenn man den Effekt eines großflächigen „Flares“ nicht bildnerisch nutzen will, kann ich tatsächlich nur davon abraten.

d) Die Verschlusszeit: Hinzu kam der Punkt, dass man an Analog-Kameras mit typischerweise maximal ISO400-Film für ein 500mm-Objektiv doch eine tausendstel Sekunde für ein scharfes Bild gebraucht hätte – also gerade die kürzeste Verschlußzeit, die typischerweise in den 1960er Jahren zur Verfügung stand! Die Stative, die wir als Amateure damals hatten, waren auch für 500er Teles nicht wirklich geeignet.

Da die Dinger so kurz bauen, unterschätzt man unbewusst die Brennweiten-Wirkung auf das Verwackeln. Darüberhinaus hat das „Handzittern“ mit dem kurzen Griff ein großes Übersetzungverhältnis.

Im Grunde waren die weitaus meisten Amateure, die sich erstmals ein so langbrennweitiges Objektiv zulegten, unerfahren in der Nutzung und manuellen Fokussierung solcher wirklich langbrennweitiger Objektive. Mit Übung und Zähigkeit kann man da viel erreichen – aber das bedeutet nur eines: fotografieren – fotografieren – fotografieren!

e) Nun war da auch noch die Situation des großen Zeitverzuges zwischen Auslösen der Kamera und dem Vorliegen der Ergebnisse mit entwickeltem Film/Dias und Vergrößerungen – mit denen eventuell die Enttäuschung aufkam, dass die Ergebnisse einfach nicht scharf oder doch verwackelt sind. Da landete dann vermutlich ein großer Teil dieser zunächst attraktiv erschienenen Objektive in Schubladen und Vitrinen – bis heute: und warteten auf den Weckruf durch die hoch auflösenden, bis ISO3200 nutzbaren digitalen Systemkameras, die binnen Sekunden ein Feedback/Bildergebnis liefern?

Werden die Karten für die CATs mit den modernen Systemkameras heute neu gemischt?

Ich halte das durchaus für möglich, dass die wahre Zeit für solche Objektiv-Designs nun erst begonnen hat:

Mit der praktisch gut nutzbaren ISO-Empfindlichkeit bis zu 3.200 oder 6.400 und elektronischen Verschlüssen bis 1/40.000 Sekunde gibt es eine dramatisch verbesserte Ausgangslage.

Allerdings muss man sich immer bewusst machen, dass trotz der tollen Fokussierhilfen an digitalen Kameras das manuell Fokussieren dennoch eine echte Herausforderung bleibt – zumal der  jüngere Normalfotograf keine Routine im manuellen Fokussieren besitzen dürfte! Wenn man bei 500mm Brennweite und 11-facher Fokussiervergrößerung versucht zu fokussieren tanzt das Bild im Sucher wie beim Blick durch ein Objektiv mit 5,5 Meter Brennweite – mit etwas Pech verliert man sogar sein Ziel aus dem Auge … Da hilft nur ein Stativ!

Ein Autofokus wäre hier eine durchschlagende Verbesserung der Nutzbarkeit.

Anscheinend testet auch schon ein renommierter Fremdobjektivhersteller (Tokina) gerade den Markt mit einem nagelneuen CAT mit 400mm f/8. Aber auch manuell zu fokussieren …

Aufhorchen lässt dabei auch die jüngste Ankündigung der Firma Canon, nicht mit CATs aber mit neuen DO-Tele-Objektiven von 600mmund 800 mm mit Öffnungsverhältnissen von f/11 neu entwickelt für die Sensoren der spiegellosen Systemkameras mit AF und IS im Objektiv und ebenfalls sehr kurz bauend bzw. zum Transport zusammenschiebbar. („DO“ bedeutet „Diffraktions-Optik“ – das sind dünne, leichte Beugungs-Elemente, die Linsen ersetzen können. Canon testet diese Technik seit Jahrzehnten bei langen, lichtstarken Teleobjektiven.)

Bei der Benutzung von historischen CAT-Objektiven an den modernen Digital-Systemkameras muss man sich klar machen, dass die Optiken nicht für die Benutzung am digitalen Sensor berechnet wurden und nicht jedes CAT mit jedem Sensor harmoniert. Da kann es auch vorkommen, dass eine Optik an einer Sony Probleme zeigt, an einer Fujifilm- oder Olympus-Kamera aber nicht. Typische Probleme sind helle „Halos“ in der Bildmitte, niedrige Auflösung am Bildrand oder generell flauer Kontrast.

Viel Spaß beim Ausprobieren – ich werde in den kommenden Wochen über einige CAT-Sensor-Kombinationen in meine Rubrik „My Crazy Lenses“ berichten.

Herbert Börger, Berlin, 8. November 2020

 

 

Katadioptrische Foto-Objektive – Teil II

Teil II: Spiegel-Linsen-Systeme für die „normale“ Fotografie.

Für fotografische Tele-Objektive werden ausschließlich Kombinationen von Spiegeln und Linsen – sogenannte katadioptrische Systeme – eingesetzt.

ENTSTANDEN sind auch diese Optik-Systeme ursprünglich alle im Bereich der astronomischen Optik (s. Teil I).

Diese Spiegel-Linsen-Systeme sind für normale fotografische Aufgaben im terrestrischen oder sogar Nahbereich geeignet – aber natürlich auch für astronomische Anwendungen und auch für visuelle Beobachtung der erzeugten Bilder durch ein Okular – vorausgesetzt, dass die tatsächliche Umsetzung der Gerätekonzepte mit Auflösung und Kontrast auch die hohen Ansprüche für astronomische Geräte erfüllen!

Katadioptrische Systeme werden im normalen Foto-Bereich gegenüber reinen Linsen-Teleobjektiven wegen sehr geringer Baulänge und Gewicht geschätzt.

Der bedeutendste Unterschied der Foto-Optik (zum Einsatz als Wechselobjektiv an Systemkameras) gegenüber der astronomischen Optik ist, dass die Optiken hermetisch dicht abgeschlossen sein müssen. Ein Handhaben offener Spiegelsysteme als Wechselobjektiv im alltäglichen Einsatz wäre aus vielen Gründen undenkbar: Staubablagerung, Spritzwasser, Tau- und Belagsbildung, Beschädigung.

Das Scheitern des kommerziellen Projektes eines Nur-Spiegel-Schiefspieglers in den 1970er Jahren (Katoptaron) des deutschen Optik-Designers H.Makowsky mit einem völlig ofenen Spiegelobjektiv scheint diese Hypothes zu bestätigen. Das optische Konzept des Schiefspieglers (das es in dutzenden individuellen Varianten gibt) ist keinesfalls Schuld daran: es ist sehr erfolgreich und hoch geschätzt bis heute vor allem im Astro-Amateurbereich – aber auch bei wissenschaftlichen Anwendungen!

(Für astronomische Geräte gilt im Allgemeinen genau das Gegenteil bezüglich Offenheit: sie sind am besten so offen wie möglich, damit der Temperaturausgleich in die kälteren Nacht-Beobachtungszeiten hinein möglichst schnell und ohne Temperaturdifferenzen innerhalb des Gerätes vonstatten geht! Bei hermetisch geschlossenen Foto-Objektiven muss man sich der Gefahren durch Temperaturdifferenzen im Gerät für die optische Leistung deshalb immer bewusst sein!)

Rubrik III – das „Katadioptrische Dialyt“

Bevor wir uns den konkreten Fotoobjektiven zuwenden, müssen wir noch einen dritten Ausflug in die astronomische Optik machen. Der wird notwendig, wenn man sich die Linsenschnitte der verschiedenen katadioptrischen Foto-Objektive nur einmal flüchtig ansieht:

dabei fällt einem schnell auf, dass diese Systeme sich im Wesentlichen in zwei Gruppen unterteilen lassen:

Gruppe 1: Maksutov-Cassegrain-Systeme, leicht erkennbar an der nach vorne konkaven Frontlinse;

Linsenschnitt_Rubinar300mm_f4.5

Bild 1: Linsenschnitt Foto-Objektiv auf Basis Maksutov-Cassegrain mit Meniskus-Frontlinse und ohne Mangin-Primärspiegel (Rubinar 300mm f/4,5 – Lichteintritt links). Bei diesem guten Objektiv verläßt man sich wegen des relativ großen Bildwinkels nicht mehr alleine auf den Maksutov-Meniskus! – Quelle: Spezifikationsblatt des Herstellers

Gruppe 2: Ähnlicher Cassegrain-Grundaufbau wie Gruppe 1, aber die große Frontlinse, die das System nach vorne abschließt, ist kein Meniskus.

Mirotar 500mm f8

Bild 2: Linsenschnitt Foto-Objektiv der „Gruppe 2“ (Zeiss Mirotar 500mm f/8 von 1997), Lichteintritt links) – Quelle: Zeiss-Spezifikations-Blatt Mirotar 500mm f8

Die eventuell erwartete Gruppe auf Basis des Schmidt-Cassegrain-Prinzips existiert nicht – ich habe jedenfalls dafür nur ein Foto-Objektiv-Beispiel gefunden: das Celestron 750mm f/6.3. Ein elementares SC-System ohne zusätzlichen Sub-Apertur-Korrektor von 1978. Auch Celestron ist danach wohl bald wieder bei seinen „Leisten“ geblieben – den astronomischen Teleskopen – bis heute.

Schon die beiden frühen ersten „Zeiss-Boliden“ 500mm f/4.0 (Ost) bzw. f/4.5 (West) und 1.000mm f/5.6 – Ost und West – sind Stellvertreter der beiden Gruppen 1 und 2:

Das mit Vorstellung 1961 frühere Carl-Zeiss-Jena-„Spiegelobjektiv“ (Ost) ist ein Vertreter der Gruppe 2 mit zwei Linsen in der vollen Apertur, die nicht Menisken sind; man könnte es wohl am ehesten als Houghton-Cassegrain-Variante bezeichnen.

Das 1963 herausgebrachte Zeiss-Oberkochen-Mirotar (West) ist ein Maksutov-Typ (es hat sogar zwei-Meniskuslinsen in der vollen Apertur! (Linsenschnitt des 1000mm f5.6 in diesem Link).

Des Rätsels Lösung: die sogenannten katadioptrischen Dialyte!

Schon sehr lange war in der astronomischen Optik ein wesentlich grundlegenderes optisches System der Kombination von Linse und Reflektor bekannt: schon Newton soll darüber nachgedacht haben (!) aber erstmals schriftlich dokumentiert wurde es 1814 als Patent von F.W. Hamiltonheute bekannt als das Hamilton-Teleskop.

Damit war das Grundprinzip des katadioptrischen Dialyts (auch Brachymedial genannt) in der Welt. Es wird nach gut 200 Jahren immer noch stetig und erfolgreich weiterentwickelt – und es ist die Grundlage aller katadioptrischen Foto-Objektive.

In der einfachsten Form besteht es aus zwei Linsen: einer vorderen Sammellinse aus Kronglas (Lichteintritt) und einer hinteren Meniskuslinse aus Flintglas, deren hintere (konvexe) Fläche verspiegelt ist. Dieses hintere Element wird man mehr als 60 Jahre später (nach Mangins Erfindung für Scheinwerfer-Spiegel 1876) auch als „Mangin-Spiegel“ bezeichnen … obwohl er 1814 bei Hamilton längst da war – als katoptischer Teil des Hamilton-Teleskops.

Vom Grundaufbau von Hamilton habe ich keine Creative Commons Abbildung verfügbar, aber hier in der „telescope-optics“-Website finden sie das Bild und eine ausführliche Beschreibung und zusätzlich Informationen über Folgeentwicklungen: die Schupman-Wiedemann-Busack-Riccardi-Houghten-Honders-Terebizh-Teleskope bzw. -Kameras.

Das Maksutov-Teleskop ist demnach nur EINE spezielle Variante der katadioptrischen Dialyte! 

Maksutov hat seine Entdeckung der Meniskus-Korrektoren-Lösung selbst so beschrieben, dass ihm angesichts des Mangin-Spiegels die Idee kam, die Meniskus-Linse von der  (sphärischen) Spiegel-Fläche zu lösen und nach vorne zur Apertur zu verschieben. M. suchte nämlich nach einer Lösung für ein robustes, abgedichtetes Teleskop für Schulen, das kostengünstig in Massen herstellbar sein würde! Da lag es natürlich auf der Hand, die Möglichkeit eines verspiegelten Zentralflecks auf der Rückseite des Meniskus als Cassegrain-Sekundärspiegel zu überprüfen … was dann erfolgreich war. Ob er auch Lösungen untersucht hat, für den Primärspiegel die Mangin-Lösung beizubehalten, ist mir nicht bekannt. Er soll insgesamt 46 Systemvarianten durchgerechnet haben … Ob ihm das Hamilton-Teleskop damals bekannt war, weiß ich nicht.

Sieht man sich die verschiedenen Lösungsvarianten der katadioptrischen Dialyte im Detail an, entdeckt man z.B., dass die Bauweise der Korrektorlinsen im Houghton-Teleskop dem Linsenschnitt in den Carl Zeiss Jena „Spiegelobjektiven“ (1961) entspricht.

Bild 3: katadioptrisches Dialyt nach Houghton, diese Korrektor-Bauform wird offensichtlich im Zeiss Jena Spiegelobjektiv verwendet  – Quelle: Wikipedia – Autor: Rick Scott – https://creativecommons.org/licenses/by/3.0/

Gegenüber den „einfachen“ Frühformen reiner Spiegelteleskope verfolgte man beim katadioptrischen Dialyt von Anfang an zwei grundlegende Ziele:

  • Die Verwendung von ausschließlich sphärischen Flächen bei Linsen- und Spiegelflächen (Kosten! Massenfertigung! Genauigkeit!);
  • das Erreichen sehr großer Bildfelder mit hoher Bildgüte, z.B. für Astrographen-Kameras.

In der deutschen Wikipedia gibt es einen recht guten Übersichtsartikel über die katadioptrischen Dialyte – allerdings ohne Grafiken. Wer mehr Details braucht, dem empfehle ich nochmals die „telescope-optics“-Website.

Während in der Zeit vor dem 2. Weltkrieg bei astronomischen Teleskopen und Kameras bevorzugt asphärische Korrekturen zur Optimierung der Bildqualität zum Einsatz kamen (Beispiel: Ritchey-Chretien-Cassegrain!) wird in der jüngeren Zeit bevorzugt mit sphärischen Optik-Flächen gearbeitet. Terebizh argumentiert in seiner Veröffentlichung von 2007 damit, dass sphärische Flächen sehr viel präziser und reproduzierbarer hergestellt werden können (also nicht nur billiger sind). Die damit erzielte Bildqualität sei nachweislich besser. Hinzu kommt, dass man – spätestens ab den 1980er Jahren –  neuerdings wesentlich mehr Freiheitsgrade im Bereich der Linsen-Korrektoren mit neuen Glassorten und effizienten Beschichtungen hat.

Hier gehts zu Teil III – zu den Fotoobjektiven von 1946 bis heute.

Herbert Börger, Berlin, 31. Oktober 2020

 

My Crazy Lenses / Meine sehr speziellen Objektive: Focal-Length 40 mm / Die Brennweite 40 mm – Part I

40 mm/45 mm (or 43 mm) is one of my very favorite focal lengths: in fact it corresponds very close to the diagonal of the 35 mm still photo format!

… and it is the perfect focal length for street photography – and it may be the best, which can happen to you for all situations in which you have just one focal legth to choose, which means: you have no choice really …

The first camera, which very early „socialized“ me for Single Lens Reflex Cameras was the Contaflex II with Tessar 45mm f2.8 of 1953.

Contaflex-II_900

It was the time before the German photo industry „suddenly“ collapsed and when the local camera dealer still could repair a Contaflex II mechanically just within a day! (And there was nothing else really but mechanics – you will not seriously call a Selen photosensitive cell „electronics“?!)

This history may have strongly influenced me in my preference for this focal length – but you may also find one thousand good reasons for this focal length, which is the „real normal focal length = the diagonal of the 24 x 36-format“ indeed: longer than 35mm, shorter than 50mm.

In early times most of the point-and-shoot-cameras with fixed (built-in) normal lenses had 38mm to 45mm lenses … and there are still some today.

In fact this focal length was ALWAYS present in the photo industry for system cameras – and I own some of them:

Tessar 45mm f2.8 as fixed lens in the Contaflex II of 1953
„New“ Tessar 45mm f2.8 for Contax/Yashica-Mount – a 1983 design based on new glass
MD-Rokkor 45mm f2.0 – a pancace-type standard lens for Minolta SRT cameras of 1978
Minolta M-Rokkor 40mm f2.0 with Leica-M bayonet  (for the 1973 „CL“ Leica/Minolta)
Olympus 40mm f2.0 – an ultra compact pancake design of 1978 for OM cameras
Planar 45mm f2.0 for Contax G1/G2 of 1994

… and the modern available to-date lenses:
Fujinon 27mm f2.8 pancake design for APS-format X-trans sensors (correspond. to 43mm)
Panasonic 20mm f1.7 for Micro Fourthirds (corresponds to 40mm at FullFormat)
Batis (Distagon) 40mm f2.0 for Sony E-Mount (FullFormat) of 2018
Sigma 40mm f1.4 for Sony-E-Mount (FullFormat) of 2018
Fujinon 50mm f3.5 for Fujifilm GFX50/100 with sensor 44mm x 33mm

From this list of 11 lenses you can make the conclusion how important this focal length is to me!

… and there is an interval of 65 years in making betweeen all of these lenses!

There are other famous historical lenses, which are not available to me:

I once owned a Nikkor 45mm f2.8 pancake-lens of 1977 on the Nikon F3M – it was a just average Tessar design. The Pentax DA 45mm f2.8 Limited is famous (a Gaussian!). As far as I know, Canon never played around with something like that … nor did Leica! What a pitty!
There is as far as I know also a modern Voigtländer lens 40mm f2.0, which I never tried! As it is an „Ultron“-design (and also includes an aspherical lens) it should also be of top notch performance. About the Voigtländer Nokton 40mm f1.2 aspherical I know nothing but that it probably is a „Distagon“-type lens as my Batis is …

Now here is my odd couple of the week:

–> look at the Olympus 40mm f2.0 pancake vs the Sigma 40mm f1.4 !

OddCouple_OM+Sig_
Bild 1 / picture 1: Olympus OM 40mm f2.0 und Sigma 40mm f1.4 – David and Goliath?

The Olympus 40mm f2.0 is a modified (6 lens – 6 groups!) double Gauss design – but extremly sophisticated due to the extremely short physical length combined with a very respectable speed of 2.0 at a length of 26mm and weight of 146 grams – Filter diameter 49 mm … and the close-focusing ability to 0.3 meters in spite of its compactness! You must however consider, that the OM is made for an SLR: that means, to put it on the same mirrorless Sony-E-Mount-Camera, the adapter adds another 28 mm. But in spite of that – the optical construction is actually pressed into the 26 mm length – including space for a filter-thread… Sitting on my Olympus OM 3Ti camera body it is as perfect package!

The Sigma 40mm f1.4 DG HSM / Art for E-Mount is a monster weighing 1,200 grams and stretching over a length of 157mm. It is composed from 16 lenses, which are stacked nearly face-to-face in the volume of the assembly – including all types of modern glasses  … and even one aspherical lens! And it uses 82mm diameter filters … You could call this a „stretch-limousine“ of modern photo-technique … When you put it on a Sony A7R you feel crazy – and in the street everybody thinks, you are peeping into the crowd with a super-telephoto! That is somewhat embarrassing.

And no: it has NO tripod-thread somewhere near the lens+camera-center-of-gravity. So you have to balance the massive lens on one hand while you take care of that tiny miniaturized camera at the near end of it…

Could there be any rational sense in the making of the Sigma-Monster? Serving exactly the same purpose on the camera: taking a picture with an angle of view of circa 57 degrees?

O.k., lets try:

The lens has a very high speed – I do not know personally any other 40mm-lens with f1.4 so far  – at least for FullFormat. (There has been a 40mm f1.4 for Olympus Pen HalfFrame-Cameras in the nineteen-sixties and yes: there is even a Voigtländer Nokton 40mm f1.2 now for 35mm) … and this Sigma is the best photographic lens I know at present for 35mm-format (independent of focal length and brightness)  – a fact that might justify even the price … Beware: this is my personal ranking – nothing more nor less.

The optical qualitiy of the lens is overwhelming … I instantly saw the brilliant performance of this lens – just through the finder of my Sony camera! An extraordinary situation! At f1.4 !!!

So now let us look at the resolution facts measured with IMATEST. For this I use generally the Sony A7RM4. How much better is the super-ambitioned super-modern Sigma against the antique Olympus gem of 1978?

The spreadsheet shows some other historical and modern lenses for comparison purpose.

(Remark: As I cannot measure resolution with a fixed lens in an analog camera like the Contaflex II, I chose a typical 50mm-Tessar of the nineteen-fifty/sixties from Zeiss-Ikon for the first comparison-position. The „old“ Tessar from 1961 is what you expect from it (based on 1902 invention by Paul Rudolph): good anastigmatic design but a little bit soft.

Tabelle2_Odd-Couple-40mm

Bild2 / picture 2: Resolution, edge-profile width, distortion and  CA for a group of 40/45mm-lenses for 35mm-FullFormat (In the same range of FoV – 56 degrees –  I added data for the corresponding Fujinon 27mm-lens for APS-sensor format of X-H1 and the 50mm-lens for 33x44mm-Format of GFX)

(Bemerkung zu der hier neu hinzugefügten Spalte 4 – „Kantenschärfe“: das ist die Breite des Übergangs an einer standardisierten Hell-Dunkel-Kante von 10% bis 90% (in Bildmitte) – siehe untenstehendes Bild 2

Remark in reference to the column 4 width of „edge-profile“: this is the width of the transition from white to black at a standardized edge between 10% and 90% of brightness (in the center) – see picture 2 below, upper graph:

Kante_Sigma40f1,4

Bild 3 / picture 3: Edge profile (10-90% rise – upper picture) and MTF-curve (lower) for Sigma 40mm f1.4 fully open (f1.4). Absolute perfect performance! Remarkable MTF-result: MTF is stunning 0.403 at Nyquist-frequency and drops slowly stopping down! Excelent lenses like the Batis 40mm f2.0 start at 0.3 and reach 0.35 at optimum f-stop (f4.0).

Note: n this comparison I left out the potential options for 40-45mm focal length in zoom-lenses! This is a focal length, which is available in many zoom lenses, of course. And once you are using zoom-lenses, this is a viable option, too. But it would have led to an epic length of the article (adding about the same number of zoom-lenses to the test-field of fixed focal-lengths …)

The optical quality-results of the Sigma 40mm f1.4 / Art (on the 62 MP Sony A7R4 –  Nyquist frequency: 3.168 LP/PH):

  • At f1.4 the weightet mean resolution of MTF30 over full frame is 93% Nyquist-frequency (center 102%, corner 78%)
  • 10-90% rise of edge profile is 0.96 pixels at f1.4 – which is lowest at this f-stop
  • MTF at Nyquist-frequency is 0.403 at f1.4 – going down to 0.34 at f5.6.
  • Center resolution is max. at f2.0 with 110% Nyquist-frequency (3.472 LP/PH)
  • weighted mean is max. at f5.6 with 99% Nyquist-frequency
  • at this f5.6 f-stop the corner-resolution (average over 4 corners!) reaches 88%
  • The differences of resolution between f2.0 and f8.0 are irrelevant under practical photographical aspects: 3.017 – 3.141 LP/PH weighted average over the full frame!
  • Distortion is -0.01% to -0.1% – at most f-stops around 0.05% – let’s say: „ZERO“
  • Lateral Chromatic Aberration (CA) is max. 0.1 mostly ca. 0.03 pixels around f5,6
  • Autofocus is excellent!
  • Due to the high image-contrast, manual focusing is very easy, fast and precise with this lens!

(LP/PH means: Line pairs per picture hight – picture hight für Sony A7R4 is 6336 pixels.)

Conclusion: The Sigma 40mm f1.4 is a highly convincing lens opticaly and in build quality. A bit closer focusing range would have been nice for its price (like the Batis 40f2.0 – and even the pancake OM-40mmf2.0 focuses closer!) – the handling on the Sony mirrorless camera is a serious task … I cannot recommend to put the camera with this lens on a tripod for day-to-day-work – just using the tripod-thread of the camera-body! (For my IMATEST test-frames it worked just o.k.). I would recommend to use this lens on a massive and solid D-SLR to be really happy with it! Personally I would use it for Street Photography and for Architecture – if there were not the handling restrictions.

And what about the optical merits of the compact side of the „Odd Couple„? —- The Olympus OM 40mm f2.0?

The merits are fantastic – even in comparison to modern lenses – especially under the aspect of its compactness. I was very amazed, when I read, that the lens was considered by Olympus as a low-cost alternative to other standard lenses (entered at just below 80 Dollars!). In spite of that (and the quality!) there were not so many sold … (good for the price on the second hand market!).

This lens was designed just a few years before the exciting new glass-types (like ED-glass) entered the industry – delivered from 1978. In the center it is just about 3% behind the Batis – even open at f2.0. In the corners it starts low – typical for the time (see the MD 45mm f2.0). Stopped down to f8 it improves dramatically in the corners (at 90% of the FOV!) – resolving ca. 7% close to the corner performance of the Batis 40mm. This resolution-perfomance of the OM 40mm f2.0 is much better than it could be used practically on the normal analog film-emulsions of the 1970s times (or even today) – with good contrast at the same time.

The price, this Olympus OM-lens has to pay for its compactness is obviously the distortion (at -1.5% still really acceptable for the time) and the CA – twice as big than contemporary „standard-Lenses“ and 20 times larger than typical today (not to forget both properties could be corrected afterwards today as well!).

Stopped down this ultra-compact Olympus OM-gem  40mm f2.0 reaches results in practical picture-taking, which use the resolution of the 62 MP mirrorless sensor seriously! Look at the two comparison-shots of a Montbretia-colony below, which are taken free-hand, manual focussing. The depth of the scene allows to judge, where the sharpness-plane really is. And with a large number of similar objects you have the chance, to hit one of these with the focus-point exactly. At least you can tell: no – it is not the lens, which is not sharp: it is you, who focused wrong …

I chose a „nature-scene“, because in this you have the chance, that below the larger structure of the object there is still a sub-structure … and below that another sub-structure … and so on! The picture of a bicycle-frame does not offer too much of that … I did focus at the stamens of the highest upright blossoms near the center. (Natural sunlight came from the right side.)

DSC06004_HD

Bild 4 /picture 4: The scene for the comparison shot – here with Olympus OM 40mm f2.0 at f8  – distance ca. 0.9 m (on Sony A7R4) – MANUAL focussing

Following are sections at 100%-view-level (no corrections made on the data-file):

Here with the Sigma-lens I exactly hit the target, which I focused (blossom in the middle of the three) – on a big screen you see the wonderfull plasticity of the stamens-details even on this level of enlargment. Red is a difficult colour and the contrast within the blossom-leaves is very low.

DSC06000_Sigma100%

Bild 5 /picture 5: Detail of this scene – here with Sigma 40mm f1.4 at f8 (H:1325 pixel)

Next is taken with the Olympus OM 40mm f2.0: the focus sits about one cm more in front compared to the Sigma-shot: here it is the right blossom with stamens – nearly as sharp as with the sigma. I had not noticed, that a wasp had settled on the Montbretia flower – exactly in the focal plane …!

DSC06001_OM100%

Bild 6 / picture 6: Detail of the scene with Olympus OM 40mm f2.0 at f8 (H: 1300 pixel)

Next picture:  Look how the insect pops out from the picture with the Olympus OM-lens at 0.9 meters focusing distance, with a surprising plasticity even at 100% viewing-enlargement (see picture 7) – even the fine hairs on the insects body starting to show.

DSC06004_OM40_Wespe_100%

Bild 7 /picture 7: Detail of a second shot with the wasp taken with Olympus OM 40mm f2.0 at f8 (height: 763 pixel) – at 100%-enlargement (picture taken at distance 0.9 meters!)

Conclusion: if you like to stay nearly „invisible“ in the street (where corner-resolution rarely matters!) and if you are well used to and experienced with manual focusing (MF), this more than 40 years old Olympus lens-design still is a valid option to use – even on the Sony A7R4! My copy still is clear and contrasty (obviously!). Near the center, the detail-resolution is really comparable to the Sigma monster-lens stopped down (f5.6 … 8.0). The merits of the Sigma-lens are its phantastic performance between f1.4 and f2.8 and into the corners – at practically zero distortion and CA!

The closest modern competitor to the Sigma 40mm is the Batis 40mm f2.0 (Distagon), which is just slightly behind the Sigma in every single optical property – fortunately it is also somewhat behind in price … and very-very-much lower in weight. As mentioned already it focuses very close! In practical picture-taking situations, you would probably not be able to tell which picture is made with the Sigma and which with the Zeiss-Batis – if close focusing is not part of the game…

The optical properties of all the other historical lenses in the comparison show very well the typical development in optical quality of standard-lenses over the time since just shortly after World War II (from 1953 – when I was 8 years old).

Two of these lenses ar made not for SLRs but for Rangefinder-Cameras, with the typical short distance between the rear of the lens and the film/sensor (rear focus). Especially at wider field of view this leads to light-rays, hitting at very flat angles onto the picture-plane. That is no problem with analog film – but a desaster with digital sensors!

These RF-lenses are the Minolta-M 40mm f2.0 (for Leica-M-Mount, coming with the Minolta CL in 1973) and the Planar 45mm f2.0 for the legendary (Autofocus!) Contax G1/G2 – early 1990s. Both are suffering severely under the oblique-ray-problem on the Sony-Sensor leading to very low corner-resolution in my measurements! This does not reflect the real performance on analog film!

The Planar 45mm f2.0 was famous as one of the best standard-lenses of its time – and I can confirm, that there is no such corner-resolution issues on analog film with my Contax G2. Interesting, that the issue vanishes stopped down to f8. Together with the Sonnar 90mm f2.8 on the Contax G2 you had one of the best lens-sets  of the 90s (plus autofucus!) on one of the most beautiful cameras EVER… That you could additionally have a crazy HOLOGON 16mm f8 on this camera makes it even more remarkable.

Sensational is the „New Zeiss Tessar“ 45mm f2.8 for Contax SLR – an extreme pancake-lens  (length 16mm !) based on the new glass-types of the early 1980s. In this Zeiss has extended the performance of the famous 4-lens-Triplet (invented 1902) to the level of the best double-gauss designs (Olympus 40mm and Contax-G-Planar 45mm). Only the edge-profile-sharpness did not arrive at the level of the Gaussians. It was also edited as aniversary-lenses for both Contax-aniversaries 1992 (60th) and 2002 (70th) – the latter one together with the Contax Aria: a much beloved combination, which I owned once.

Stopped down (to f8-f11) it nearly reaches the performance of the modern Batis 40mm! This lens was very expensive for a 4-lens design (starting at DM 698,00 – later € 449,00)! Due to this probably not too many should have been sold – however, still today it is legendary! The legend is justified by the measured data.

The Angénieux-Zoom 45-90mm f2,8: I could not resist to put this first Photo-Zoom of Angénieux (designed ca. 1964 – delivered exclusively for Leica SL/Leica R from 1968 to 1980!) into this comparison. The reason: in the 1960-70s in Germany, the so called „German doctrine“ was common sense, which says: „No zoom-lens can ever reach the performance of a fixed-focal-length lens!“ I can testimony this myself: that is what I thought at that time, too. And it was unfortunately confirmed, after we bought the first cheap zoom-lenses for amateurs.

For the professional cine-lens sector, this was not true any more since 1956/1960 – when Pierre Angénieux launched the first 4x-cine-zoom-lenses in production … and 10x-zooms since 1964. (More details about this in my article about Pierre Angénieux – a detailed analysis about his photo-zooms will follow soon in this blog.)

Look at the resolution-data of the 45-90mm-Zoom at 45mm: it reaches 96% of Nyquist-frequency on the 62 MP-Sony in the center. It is on par with fixed-focals of that time – and even wide open it surpasses them in the corners!

Finally I put in at the end of the comparison list, the (in my opinion) most under-rated Fujinon-X pancake-lens 27mm f2.8 (corresponding to 43mm at full-frame). It reaches 125% Nyquist at f4.0 on the Fujifilm H-1 (24 MP), has low distortion and perfect CA and corner-sharpness values. It is a bit soft in the corners wide open. Perfect for street-photography!

Berlin, 7. August 2020

fotosaurier – Herbert Börger

P.S.: I personally own all lenses and cameras, about which I am writing here in my blog. There are no lenses, which the maker or distributer has given to me for free or temporarily. And as you see, there is no advertisement in my blog… and I do not ask for other „support“ from you than that you tell me, if you have found an error. Of course, you are welcome to share your own experience with us in comments.

PPS: Parallel to the Sony A7R4 I shot the same scene with the 50mm f3.5 lens on the Fujifilm GFX100 (also stopped down to f8.0) – which corresponds exactly to the 40mm focal lenth on 24x36mm. See the following detail of the Montbretia blossoms – here again the rightmost blossom with stamens is exactly in the focal plane. The structueres are recorded here even with higher smootheness and plasticity, which is the advantage of the 100 MP sensor, an excelent algorithm and a very good lens as well, which resolves up to 5.051 LP/PH (at f5.6) in the center!

DSCF7459_50mm100%

Bild 8 / picture 8: Detail of same scene with Fujinon 50mm f3.5 on Fujifilm GFX100 at the same distance of 0.9 meters. (height: 1439 pixel)

 

 

Die Rand-/Ecken-Auflösung historischer SLR-Objektive – Teil 1 (Test-Targets)

Beim „Neustart“ der Foto-Objektiv-Produktion direkt nach dem 2. Weltkrieg lag die Rand-/Ecken-Auflösung typischer Objektive für das Kleinbildformat im Bereich von 300 … 400 … 500…600 Linienpaaren je Bildhöhe von 24 mm (entsprechend ca. 25 … 32 … 40 … 50 Linien/mm), während  diese Objektive in der Bildmitte (auch bei Offenblende) über 3.000 LP/PH liefern können. Bei den damals neuen Retrofokus-Weitwinkelobjektiven konnten bei offener Blende die Auflösungswerte in den Ecken auch bei 200 LP/PH oder darunter liegen (entspr. 17 Linien/mm).

Das sind nüchterne Zahlen – der Fotograf „denkt“ aber in Bildstrukturen! Ihn interessiert, was er SIEHT.

Was bedeutet dieser Auflösungsabfall von der Bildmitte zu Rand/Ecke für die praktische Fotografie?

Zunächst möchte ich dieser Frage an reproduzuierbar verfügbaren ebenen Bildstrukturen in einem Testbild für Auflösungsmessungen nachgehen, in dem man außer dem allgemeinen Schärfeeindruck auch Erscheinungen wie (Rest-)Astigmatismus und Farbfehler beurteilen kann.

40 L/mm am Rand galten bei Fotoobjektiven der 1950/60er Jahre bereits als „sehr gut“. In den 50er Jahren erreichten Objektive nach den Stand der Technik am Rand ganz selten Werte über 50 … 60 Linien/mm nach den damaligen Tests auf üblichen, feinkörnigem und normal bildgebenden Filmemulsionen, wie sie auch vom Normal-Fotografen verwendet wurden. In der Bildmitte gemessen erreichte die „analoge“ Kombination Objektiv/Film selten Werte oberhalb 90 L/mm.  Auf Spezial-Platten mit hoch-auflösenden Emulsionen – ausgewertet unter dem Mikroskop – konnte man aber auch damals durchaus bis zu 500 Linien/mm messen, was „digital“ 6.000 LP/BH entsprechen würde.

Der Bild-Sensor in der hier verwendeten  Sony A7Rm4 erreicht 3.184 LP/mm (60,2 MP).

Schon in den ersten 25 Jahren des 20.Jh. konnte mit den ausgereiften Anastigmaten in der Bildmitte („axial“) praktisch „beliebig hohe“ Auflösungen erreicht werden und es standen dafür auch geeignete Glassorten zur Verfügung. Man betrachte die mit IMATEST ermittelte Auflösungskurve (über dem Bildradius aufgetragen) des 1923er Ernostar 100mm f2.0 bei nahezu voller Öffnung (f2.8) an der 60MP-Sony-Kamera:

Ernostar100f2_2,8_Vgl
Bild 1: Kantenprofil, MTF-Kurve in der Bildmitte und Auflösung (LP/BH) über Bildfeld des Ernostar 100 f2.0 bei Blende 2.8

Es ist ein 4-Linser mit vier einzel stehenden Linsen – ohne Vergütung! Dafür erscheint Kantenprofil und MTF-Kurve sehr gut. Aber die Auflösungskurve über dem Abstand von der Bildmitte (100% auf der Abszisse entsprechen einem Bildkreis von 21,5mm Radius!) zeigt einen beängstigenden „Absturz“ von über 2.600 LP/BH auf ca. 300 LP/PH an Rand/Ecken!

Hier die Situation dreißig Jahre später – dazwischen liegt der 2. Weltkrieg:

Ang90f2.8_Vgl
Bild 2: Angénieux 90mm f2.5 von 1951  – Auflösung Rand/Ecken liegt bei 400/600 LP/PH – bei f2,5 – immerhin leicht verbessert

Die deutlich größere Verbesserung gegenüber dem Ernostar zeigt sich erst abgeblendet:

Ernostar100f2+Ang90f2,5_f11_Lens_MTF
Bild 3: Ernostar 100f2.0 (links) und Angénieux 90f2.5 (rechts), jeweils abgeblendet auf Blende 11 (optimale Blende)

zwar hat sich das Ernostar noch einmal auf olympische 3.000 LP/PH in der Mitte gesteigert (was 93% der Nyquist-Frequenz der verwendeten Kamera entspricht!) aber am Rand bleibt es bei 700-800 LP/PH (allerdings: immerhin verdoppelt).

Das Angénieux 90mm f2,5 erreicht nun aber über die gesamte Bildfläche gemittelt 2.789 LP/PH.

Machen wir noch einmal einen Sprung 30 Jahre weiter in das Jahr 1987. Die Entwicklung neuer, leistungsfähiger Glastypen hat nun weltweit neue Voraussetzungen geschaffen und war die Voraussetzung für das folgende typische Ergebnis am Beispiel einer anderen Optik-Legende:

Apo-Macro-Elmarit100f2,8_f2,8_Vgl
Bild 4: Leitz Apo-Macro-Elmarit 100mm f2.8 volle Öffnung Blende 2.8 – die extrem nach unten streuenden Messpunkte im rechten Bild stammen von der linken-unteren Ecke des Bildes, in der die Auflösung lokal dramatisch abfällt – die Ursache kenne ich nicht (ein Leitz Apo sollte eigentlich keinen so großen Zentrierfehler haben…).

Dank der neuen Gläser ist das Apo-Macro-Elmarit nun „offenblendentauglich“ – obwohl Kantenprofil und MTF-Kurve in der Bildmitte sehr ähnlich den Kurven des über 60 Jahre älteren Ernostar 100mm f2,0 sind! Abgeblendet, bei optimaler Blende (5,6) ist der Mittelwert der Auflösung über das gesamte Bildfeld des Apo-Macro-Elmarit (2.907) dann gerade mal 120 LP/PH höher als der Wert des „ollen“ Angénieux – und die Maximal-Auflösung des Apo-Macro-Elmarit in der Bildmitte ist abgeblendet nicht höher als beim Ernostar ….

Noch eine für seine Entstehungszeit sehr bemerkenswerte Eigenschaft des Angénieux 90mm f2.5 sticht hervor – der sehr niedrige Farb-Fehler (CA):

Angén90f2,5_f11+Apo-Macro-Elmarit100f2,8_Radial_Vgl Kopie
 Bild 5: Achtung: unterschiedliche Nullpunktlage und Maßstäbe in den Ordinaten!

Auf sehr geringen Niveau ähnlich Apo-Macro-Elmarit bei blau, dreifach so groß bei rot! Aber immer noch ein Drittel vom Contarex-Sonnar 85mm – zehn Jahre später. Einen Kompromiss musste Angénieux aber seinerzeit offensichtlich eingehen, um das zu erreichen: eine relativ hohe Verzeichnung von -1,2% gegenüber +0,4 beim Ernostar und +0,17 beim Apo-Macro-Elmarit.

Man kann also sagen:

der Fortschritt in der optischen Technologie lieferte für die Foto-Objektive überwiegend verbesserte Randauflösung bei Offenblende bei gleichzeitig verbesserter Farbkorrektur, Verzeichnung und erhöhtem Kontrast und verbesserter Streulichtresistenz bei niedrigen Frequenzen – letzteres nicht zuletzt durch die dramatisch verbesserte Beschichtungs-Technologie.

In diesem Link finden Sie Vergleiche des Angénieux 90mm mit weiteren Objektiven über den gesamten Zeitraum 1923 – 2015.

Ich schließe aus meinen vielen Messungen an historischen Objektiven aller Epochen, dass man ab Anfang der 1970er Jahre, den extremen Randabfall der Objektive bei Offenblende schrittweise reduzieren konnte – bereits 1977 gibt es ein Beispiel eines quasi „Ideal-Objektivs“ im Bereich Kurztele (Porträt): das VivitarSerie1 90mm f2,5 Macro! (Mit Einschränkung bei der Streulichtfestigkeit…)

Bei wesentlich größeren Bildwinkeln war das natürlich wesentlich schwieriger und gelang bei Weitwinkelobjektiven entsprechend später mit immer höher- und niedriger-brechenden Gläsern – und im Extremfall (großer Bildwinkel und hohe Lichtstärke) zuletzt erst mit dem Einsatz asphärischer Linsen.

Was bedeuten aber nun die niedrigen Rand-Ecken-Auflösungen bei den frühen historischen Optiken in den Bildstrukturen?

Fangen wir mit einer reproduzierbar beleuchteten, ebenen Objekt-Situation an, in der wir auch diese Auflösungswerte messen: dem detailreichen Test-Chart, das wir abfotografieren. Die Beschreibung der Testmethode finden Sie in diesem Link.

Das ist das Test-Bild, hier durch das Angénieux 90mm f2.5 bei voller Öffnung fotografiert.

#TestChart_Angén90f2,5_f2,5
Bild 6: Imatest-Test-Chart SFRplus, fotografiert im Kleinbild-Format 3:2

Der Abstand zwischen den oberen und unteren schwarzen Balken ist 783 mm im Original.

Die Analyse-Software von IMATEST verwendet übrigens nicht die kleinen Rosetten, die in die dunklen Quadrate eingebettet sind, sondern die Seitenkante der Quadrate, die um 5.71° VERDREHT sind. Mehr erfahren Sie in dem oben aufgeführten Link.

Das Übersichts-Bild soll Ihnen ein Gefühl davon vermitteln, wie fein die Rosetten-Details sind, wenn man ein Bild im normalen Betrachtungsabstand ansieht.

Hier das Detail eines Quadrates mit Rosette in einer Größe, die der Betrachtung des mit der 60MP-Kamera aufgenommenen Bildes bei „100%-Betrachtungsmaßstab“ entsprechen würde (d.h. 1 Bildschirmpixel entspricht 1 Kamerapixel) – wenn Sie das Quadrat auf Ihrem Bildschirm mit ca. 22cm Kantenlänge sehen.

Dies ist das Quadrat genau im Zentrum:

#TargetCenter_Angén90f2,5_f2,5
Bild 7: Zentrales Target-Quadrat, 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – laut Analyse beträgt die Auflösung des Objektivs hier 2.500 – 2.700 LP/PH (sagittal/meridional) – 100%-Ansicht bei 60 MP!

Folgend nun der entsprechende Ausschnitt in der oberen-rechten Ecke (wegen der sichtbaren Verzeichnung von -1,2% sind die Qadrate in der Mitte und in der Ecke nicht genau gleich groß!):

#TargerCornerUR_Angén90f2,5_f2,5
Bild 8: Target Nr.3 (obere rechte Ecke),, 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – laut Analyse beträgt die Auflösung des Objektivs hier im Mittel 560 LP/PH 

Die Vignettierung (im Mittel über alle Ecken 2 f-stops) hat hier natürlich noch einen bedeutenden Einfluss auf das visuelle Betrachtungsergebnis! Es fällt allerdings sofort auf, dass trotz der hohen Vergrößerung fast keine Farbsäume zu sehen sind – allenfalls ein sehr kleiner roter Schimmer, wie vom CA-Diagramm zu erwarten ist.

Das folgende Bild zeigt dasselbe Detail, auf das ich nun die Vignettierungs-Korrektur von ca. zwei Blendenwerten angewendet habe, wie man Sie mit Photoshop oder als kamerainterne Korrekturmaßnahme durführen könnte:

#TargerCornerUR_corr_Angén90f2,5_f2,5
Bild 9: Target Nr.3 (obere rechte Ecke), 100%-Ansicht (966 x 966 Pixel) Angenieux 90mm f2.5 bei Blende 2.5 – Vignettierung kompensiert. Meridional ca. 400, sagittal ca. 600 LP/PH

Hier erkennt man drei Dinge:

  1. Die 560 LP/PH-Auflösung liefern tatsächlich noch klare Bildstrukturen – wenn auch „weicher“
  2. Die Farbreinheit der Abbildung bestätigt sich – allerdings erkennt man einen leichten generellen Gelbstich hier in der Bildecke
  3. Man erkennt sogar den Unterschied zwischen ca. 400 LP (meridional) und ca. 600 LP (sagittal) in den Rosetten-Details: die Ringe sind in der Bild-Diagonale von links oben nach rechts unten erkennbar „kantenschärfer“!

Die Struktur ist „weicher“ wiedergegeben – aber dennoch deutlich und mit gutem Kontrast sichtbar.

Beachten Sie bei diesen Bildern bitte: es handelt sich um die 100%-Darstellung des 60 MP-Bildes!

Anmerkung: In Imatest-Diagrammen wird der angelsächsischen Nomenklatur folgend „meridional“ meist als „tangential“ bezeichnet (tangential = meridional) diese Kuven sind durchgehend gezeichnet, die sagittale Auflösungskurve gestrichelt.  In MTF-Diagrammen der Fa. Zeiss ist die Zuordnung umgekehrt: gestrichelt meridional und durchgezogen für sagittal

Kritischer ist diese Situation bei Weitwinkel-Objektiven, bei denen Farblängsfehler und Astigmatismus an Rändern und Ecken eine deutlich größere Rolle (wegen der viel größeren off-axis-Winkeln) spielen.

Wir betrachten das folgend an von 24/25mm-Retrofokus-Objektiven „der ersten Stunde“ (1957/71):

Angénieux wahrte seinen zeitlichen Vorsprung konsequent und brachte seine „Retrofocus“-Weitwinkel-Brennweiten in schneller Folge auf den Markt: 35mm f2.5 in 1950 (6-Linser) vorgestellt und in kleinen Mengen geliefert (ab 1953 Großserie!), 28mm f3.5 (6-Linser) ebenfalls ab 1953, 24mm f3.5 (8-Linser) ab 1957. (Besonderheit: danach wurde von Angénieux niemals wieder eine Neuberechnung dieser FotoB-Optiken herausgebracht sondern diese Optiken bis 1971 unverändert geliefert und das Segment der Festbrennweiten dann völlig eingestellt.

Bei diesen frühen Weitwinkel-Objektiven ist bei Offenblende die Auflösung noch deutlich niedriger als bei dem 90er Objektiv. Bei dem Angénieux Retrofocus 24mm f3.5  liegt die Auflösung in den Ecken bei 310-354 LP/PH (sagittal) und  ca. 600 LP/PH (meridional) bei den Einzelwerten – der Ecken-Mittelwert beträgt 328 LP/PH:

Angén24f3,5_Offen_sagittal
Bild 10: Angénieux 24mm f3.5 bei Offenblende – Auflösung über Bildfeld der sagittalen Strahlenbündel

Sehen wir uns das Target Nr.5 in der rechten unteren Ecke an (sagittal mit 345 LP/PH gemessen – meridional mit 560 LP/PH):

#Target RU_Angén24f3,5_f3,5
Bild 11: Angénieux 24mm f3.5 bei Offenblende f3.5 – Target Nr. 5 – rechte untere Ecke (Vignettierung kompensiert) – sagittal 345 LP/PH – meridional 560 LP/PH

 

Trotz der deutlichen Rest-Fehler ist die Struktur noch deutlich erkennbar, wenn auch richtungsabhängig. Der sagittale Wert entspricht 29 L/mm. Die visuelle Auswirkung des Farbfehlers ist – trotz des hohen CA von 8 Pixel! – auf die Farbsäume begrenzt.

Das Nachbar-Target (Nr. 21) links davon hat 500 LP/PH sagittal und 502 LP/BH meridional – also frei von Astigmatismus, aber mit CA von ca. 4,5 Pixeln:

#Target21_corr_Angén24f3,5_f3,5
Bild 12: Angénieux 24mm f3.5 bei Offenblende f3.5 – Target Nr. 21 – links von der rechten unteren Ecke (Vignettierung kompensiert) – sagittal 500 LP/PH – meridional 502 LP/PH

Folgend sehen wir das entsprechende Auflösungs-Diagramm des Zeiss Jena Flektogon 25mm f4.0 (1959):

Flektogon25f4,0_f4,0_Multi-ROI
Bild 13: Flektogon 25mm f4.0 bei Offenblende – Auflösung über Bildfeld der sagittalen Strahlenbündel

Angesichts des in den Ecken „noch“ bei 301 LP/PH liegenden Mittelwertes (gilt für sagittale und meridionale Strahlen) liegen hier die sagittalen Einzelwerte Rand/Ecken bei erschreckend niedrigen 104 – 222 LP/PH.

Sehen wir uns den Linken Rand (Mitte) mit sagittal 222 LP/PH / meridional 610 LP/PH an (Target-Nr.10):

#Target LRmitte10_corr_Flektogon25f4,0_f4,0
Bild 14: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 10 – linker Rand, Mitte (Vignettierung kompensiert) – sagittal 222 LP/PH – meridional 610 LP/PH

Hier ist die Struktur schon sehr weich aber deutlich zu erkennen – kräftiger Rest-Astigmatismus, aber sehr geringer Farbfehler. Es ist schwer zu sagen, wie diese Situation analog auf Film gemessen worden wäre: 222 LP/PH entsprächen 18,5 Linien/mm… das wäre wohl nicht mehr als gut bewertet worden.

Nur wenige mm weiter nach außen am Target 17 (rechter Rand ein Taget nach unten) liegt die Auflösung bei sagittal 160 LP/PH und meridional bei 591 LP/PH:

#TargetNr17_corr_Flektogon25f4,0_f4,0
Bild 15: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 17 – rechter Rand, eins unter Mitte (Vignettierung kompensiert) – sagittal 160 LP/PH – meridional 591 LP/PH

Hier bricht im sagittalen Sektor der Struktur der Kontrast endgültig ein – fast schon verschwommen und man erkennt, dass noch weiter rechts am äußersten Rand (es fehlen noch 4mm bis zum Rand) der Kontrast noch einmal dramatisch absinken wird.

In der Ecke oben rechts (Target Nr. 3) mit 104 LP/PH sagittal, 338 LP/PH meridional:

#Target3-UR_corr_Flektogon25f4,0_f4,0
Bild 16: Flektogon 25mm f4.0 bei Offenblende f4.0 – Target Nr. 3 – Ecke oben rechts (Vignettierung kompensiert) – sagittal 104 LP/PH – meridional 338 LP/PH

Man kann die Struktur nur noch erahnen – die extrem niedrige sagittale Auflösung und der hohe Rest-Astigmatismus lösen die Bildstruktur auf – obwohl die Chromatische Aberration mit ca. 1,6 Pixel nur ein Fünftel der CA bei dem Angénieux 24mm in der Ecke ist.

Betrachten wir im direkten Vergleich das entsprechende Objektiv von Zeiss-West, das 3 Jahre später heraus kam und eine Blende lichtstärker ist – Distagon 25mm f2.8 (für die Contarex 1961):

CtrxDistagon25f2,8_f2,8_Offen_sagittal
Bild 17:

Auch hier liegen die sagittalen Werte am Rand bei Offenblende f2.8 unter 200 LP/PH.

Ich zeige folgend die beiden Targets Nr.10 (linker Rand, mitte)  und Nr.5 (rechte untere Ecke):

#TargetNr10_corr_CtrxDistagon25f2,8_f2,8
Bild 18: Zeiss Distagon 25mm f2.8 bei Offenblende Target 10 (linker Rand mitte) – Vignettierung korrigiert

Hier beginnt bei sagittal 195 LP/PH die Bilddefinition sich durch eine Kombination eines starken Rest-Astigmatismus (meridionaler Wert: 917 LP/PH) und des Farbfehlers aufzulösen – der Kontrast ist schwach.

#TargetNr5_corr_CtrxDistagon25f2,8_f2,8
Bild 19: Zeiss Distagon 25mm f2.8 bei Offenblende Target 5 (rechte untere Ecke) – Vignettierung korrigiert

In der Ecke sagittal 185 LP/PH mit starkem Rest-Astigmatismus findet sich nur noch in einem sehr schmalen meridionalen Sektor eine klar definierte Struktur (mit 379 LP/PH) mit niedrigem Kontrast.

In dieser Gruppe der FRÜHEN Retrofocus-Objektive mit 24 oder 25 mm Brennweite (Angénieux, Carl Zeiss Jena Flektogon und Zeiss-Ikon Distagon) gibt es ein viertes (1959) aus Japan: Topcon Topcor 2,5cm f3.5, das unter diesen Optiken herausragt:

Topcor24f3,5_f3,5_Offen_sagittal
Bild 20: Topcor 2,5cm f3.5 – sagittale Auflösung bei Offenblende im gesamten Bildfeld (443 … 618 LP/BH)

Der Mittelwert der (sagittalen und meridionalen) Rand-/Ecken-Auflösungswerte beträgt hier 683 LP/PH. Das folgende Bild zeigt die Struktur von Target Nr.5 in der rechten unteren Ecke:

#TargetNr5_corr_Topcor24f3,5_f3,5
Bild 21: Topcor 2,5cm f3.5 bei Offenblende, Target Nr.5  – untere rechte Ecke bei sagittal 587 LP/PH (meridional 914 LP/PH) – also mit mäßigem Rest-Astimatismus – Vignettierung korrigiert

Bei diesem Auflösungs-Niveau  (mit mäßigem Astigmatismus und geringem Farbfehler (CA-Wert in der Ecke 1,5 Pixel!) liegt nun eine klare Bildstruktur vor – nur deutlich weicher als im Bildzentrum.

Dieses Objektiv ragt damit in der Bildqualität deutlich aus dem Feld der zeitgenössischen „Superweitwinkel“ zwischen 1957 und 1961 hervor.

Sehen wir uns noch den nächsten Qualitäts-Schritt am Beispiel des Minolta MD W-Rokkor 24mm f2.8 an:

#TargetNr5_corr_MD24f2,8_f2,8
Minolta MD W-Rokkor 24mm f2.8 Offenblende f2.8 – Target Nr.5 (untere rechte Ecke) – CA mit 3 Pixel deutlicher als beim Topcor – Vignettierung korrigiert

Der Kontrast liegt hier deutlich höher mit einem Durchschnittswert der Auflösung Rand/Ecken von 1002 LP/PH.

Schließlich die gegenwärtige moderne Referenz – das Zeiss Distagon 25mm f2.0:

#TargetNr3_Batis25f2,0_f2,0
Bild 23: Zeiss Distagon 24mm f2.0 Offenblende f2.0  –  Target Nr.3 (obere rechte Ecke) – sagittal 1.206 , meridional 1.897 LP/PH und CA von 0.5 Pixeln

Das Objektiv ist mit der Auflösung bei Blende 2.0 in der Ecke mit durchschnittlich 1.517 LP/PH visuell kaum noch von der Bildmitte zu unterscheiden (Vignettierung auch hier korrigiert!).

Man sieht an diesen Beispielen deutlich, dass außer dem meßtechnischen Wert der Auflösung die Rest-Bildfehler die visuelle Wirkung wesentlich mit beeinflusst. Wobei man den Eindruck hat, dass ein größerer Farbfehler sich ggf. weniger zerstörerisch auf den Bildkontrast auswirkt als ein starker Rest-Astigmatismus.

Man sieht, dass 200-300 LP/PH als Untergrenze einer bildgebend noch brauchbaren Auflösung gelten können (s. Bild 14), wenn Rest-Astigmatismus und Farbfehler im mäßigen Grenzen bleiben. Der absolute Auflösungswert entscheidet in diesem Bereich allerdings nicht alleine über das bildliche Ergebnis. Genauso entscheidend ist der Korrekturzustand – also die anwesenden Rest-Linsen-Fehler. Allgemein sind diese historischen Objektive in der Rand-/Ecken-Auflösung ab ca. 400 – 600 LP/PH als gut zu bezeichnen (s. Bilder 11, 12 und 21) – mit gewissen Abstrichen beim Kontrast.

Ab Anfang der 1970er Jahre werden Auflösungs-Werte in den Ecken um 1.000 LP/PH bei Offenblende auch bei Weitwinkelobjektiven erreicht, womit zumindest in der Analog-Fotografie hervorragende Ergebnsise möglich waren.

Moderne Objektive erreichen dank asphärischer Linsenflächen hervorragend ausgegleichene Ergebnsise auch bei Offenblende über das gesamte Bildfeld – auch bei sehr großen Bildwinkeln (s. Bild 23).

Copyright Fotosaurier, Herbert Börger, Berlin, 14. März 2020

 

 

 

 

 

 

 

 

 

Die Qualität historischer Angénieux Foto-Objektive – 1. Festbrennweiten 1a. Porträt-Teleobjektiv 90mm f2.5

Autor: fotosaurier, Berlin, 13. Februar 2020

Dieses Objektiv wurde ab 1951 (oder 1954 … verschiedene Angaben) ausgeliefert.

Angénieux90f2,5_900
Angénieux 90mm f2.5 in ALPA-Fassung – Modell Y12 (vier einzelne Linsen)

Für alle, die den Namen Angénieux kennen, gehören diese Objektive zu den legendären historischen Foto-Produkten, die nicht nur zeitgenössisch an der Spitze lagen sondern auch führend und innovativ gegenüber dem Wettbewerb einzustufen waren.

Über Pierre Angénieux und die Firma können sie hier meinen Überblick-Artikel lesen: http://fotosaurier.de/?p=1243sternstunden-der-foto-optik-pierre-angenieux

Soweit das Vorurteil! … aber stimmt das auch? – und was kann man davon anhand von 50-70 Jahre alten gebrauchten Objektiven heute noch feststellen?

Alle Objektive, die ich hier untersuche, besitze ich. Ich will hier nicht mit meinen Testbedingungen langweilen sondern habe das Thema in einen eigenen Artikel „ausgelagert“. Im Prinzip und kurz umrissen: ich fotografiere mit den Objektiven , die ich an die jeweilige Digitalkamera (Sony A7Rm4 oder Fujifilm GFX100 im 35mm-Modus – beide ca. 60 MP) adaptiere, eine Original-IMATEST-Chart (SFRplus) unter möglichst kontrollierten Bedingungen ab und analysiere sie mit der IMATEST-Software. Mehr dazu unter diesem Link.

Als optische Qualitätsmerkmale ziehe ich heran:

  1. MTF-Kurve (MTF-Wert über Frequenz)
  2. Radiale MTF-Verteilung (MTF30-Auflösung über Abstand von der Bildmitte)
  3. Mittlerer, gewichteter Wert MTF20/MTF30/MTF50 (über gesamte Bildfläche)
  4. Kantenprofil und CA (Bildmitte, lokal)
  5. Chromatic Aberration R-G, B-G radial über die gesamte Bildfläche (nur in ausgewählten Fällen)

Als Auflösungswert benutze ich grundsätzlich Linienpaare per Bildhöhe (LP/PH). Die Bildhöhe ist hier immer 24 mm (Querformat). Nach meinen Erfahrungen ergeben die Auflösungswerte der MTF30 den realistischsten Vergleichswert für die allgemeine bildliche Fotografie.

Mein persönliches Interesse liegt dabei hierauf:

  1. welche optischen Leistungen besitzt ein historisches Objektiv?
  2. wie liegt diese im Vergleich zu zeitgenössischen anderen Objektiven?
  3. wie sieht der Vergleich zu den neueren und modernsten Optiken von heute aus?

Auf die Problematik, dass man da bis zu 100 Jahre alte, gebrauchte Objektive gegebenenfalls fabrikneuen, modernen gegenüber stellt, gehe ich in meinem Beitrag zu meinen Testmethoden näher ein. (Nobody’s perfect!)

Ich erstelle diese Testergebnisse bei allen Blenden (bis max. f16) und stelle hier im Vergleich die Auflösung in der gesamten Bildebene für die jeweilsoptimalen Blende“ dar – die natürlich zwangsläufig einen Kompromiss aus verschiedenen Eigenschaften darstellt. Im Laufe der Optik-Geschichte hat sich die für die Auflösung (und deren Konstanz über die Bildebene!) günstigste Blende ständig weiter zu größerer Blendenöffnung (kleinere WERTE) verschoben. Die ältesten Objektive (bis ca. 1965) wurden beim Abblenden meist bis zu Blende 11 immer besser in der Auflösung und Kontrast – in Ausnahmen noch weiter. Allerdings war die „Kantenschärfe“ auch damals meistens schon optimal bei Blende 5,6. Bis in die 80er Jahre liefert dann Blende 8 die beste Auflösung – später Blende 5,6. Heutige (meist asphärische) Optiken können schon bei Blende 2,8 bis 4,0 ihre höchste Auflösung erreichen. Dies habe ich hier berücksichtig und die Test-Blende entsprechend gewählt.

In der linken Spalte jeweils die Auflösung (Linienpaare/Bildhöhe – LP/PH bei MTF30, also dem MTF-Wert bei 30% Kontrast!) über der Distanz von Bildmitte (0)  bis zur Bildecke (100). Die Nyquist-Frequenz des Sensors entspricht stets der Wert 3168 LP/PH (Linien-Paare, nicht Linien!). Zusätzlich zur Auflösungskurve ist die Auflösung bei MTF30 getrennt für tangentiale und sagittale Strukturen als „gewichtetes Mittel“ über die ganze Bildfläche angegeben.

Verwendet wurden handelsübliche Adapter an den Sony-E-Mount – diese sind vielleicht die größte (mechanische) Fehlerquelle innerhalb dieser Tests.

—> Hinweis: Diese Untersuchungen an älteren und gebrauchten historischen Objektiven liefert Messergebnise für das Auflösungsvermögen, Verzeichnung und Chromatische Aberrationen der jeweiligen Objektive unter reproduzierbaren und kontrollierten Beleuchtungsverhältnissen (genormte, reflexfrei beleuchtete Chart). Das bedeutet nicht, das das jeweilige Objektiv unter allen denkbaren REALEN Lichtverhältnissen an der Digitalkamera entsprechend hochwertige Bildergebnisse erzielt – besonders im Gegenlicht können Streulicht und andere unangenehme Effekte auftreten, die bei jedem Digitalsensor unterschiedlich sein können!

Kamera ist hier die Sony A7RMark4 mit 60 MP.

Ich beginne mit meinem ältesten Nachkriegsobjektiv (die Retrofocus-Objektive und die Zooms werden in jeweils eigenen Artikeln besprochen werden):

Angénieux Porträt-Tele 90mm f2,5 von 1951 (Alpa-Anschluß): es ist, wie die meisten der Vergleichsobjektive (Ausnahme Kinoptik und Apo-Macro-Elmarit), auch ein Ernostar-Typ (vier freistehende Linsen) – die Sonnare sind ja auch ein (ebenfalls von Bertele) weiterentwickeltes Ernostar… und das  Olympus sehe ich als eine Art „Hybrid“ aus Gauss-Typ und Sonnar.

Dagegen gestellt:

  1. Ur-Ernostar 100mm f2,0 (1923)
  2. Kinoptik Apo 100mm f2,0 (ca. 1950)
  3. Canon Rangefinder (M39) P 85mm f1,8 (1960)
  4. Zeiss Sonnar 85mm f2,0 (Contarex 1961)
  5. Vivitar Serie1 90mm f2,5 Macro (ca. 1977)
  6. Leitz Apo-Makro Elmarit 100mm f2,8 (1987)
  7. Zeiss Sonnar für Contax G 90mm f2,8 (1994)
  8. Leica M Apo-Summicron ASPH 90mm f2,0 (1998)
  9. State-of-the-art: Sony GM 85mm f1,4 (Spiegellos, E-Mount, 2018)

Sorry – das sind eine Menge Daten – und es sind einige „LEGENDEN“ darunter! Wichtig war mir, die beiden „Rangefinder“-Optiken (Canon M39 und Leica M) mit einzustreuen, da ja eine weitere Legende lautet: Messsucher-Kamera-Objektive sind grundsätzlich besser als die SLR-Optiken…

Für die, denen „Contax G“ kein Begriff ist: Eine geniale, späte (und sehr schöne!) Messsucher-Kamera von Kyocera die (1994!) mit Autofokus ausgestattet war – einige der Objektive dazu gehören zu den besten, die je gebaut wurden – und sogar ein Hologon 16mm wurde dieser Kamera spendiert (eine eigene Legende). Aber Biogon 21mm und Hologon 16mm sind an Digitalsensoren nicht brauchbar (zu kurzer Abstand der letzten Linse zum Sensor – zu flacher Strahleneinfall).

Hier die von mir gemessenen Auflösungsdaten dieser Optiken in einer Tabelle:

Angénieux90 und Co Auflösungsvergleich
Auflösungs-Vergleich Angénieux 90f2,5 mit zeitgenössischen,  jüngeren und älteren Optiken

Wie schon erwähnt sind die MFT30-Auflösungswerte in der Hauptspalte 4 ein gewichtetes Mittel über die gesamte Bildfläche! (Zentrum Gewicht 1, Übergang Gewicht 0.5, Ecken Gewicht 0.25). Angegeben sind bei jedem Objektiv die Werte für Offenblende und die optimale Blende (bei den ältesten und auch beim Angénieux sind das Blende 11, je jünger die Optik, desto weiter geöffnet wird das Optimum erreicht!). Siehe auch Artikel über das Testverfahren.

Da es bei älteren Optiken erheblichen Randabfall der Auflösung gibt, habe ich die Mittelwerte NUR für das Bild-Zentrum und NUR für alle Bild-Ecken (ohne Gewichtungsfaktor!) hinzugefügt (Spalten 5 + 6).

Wenn ein Objektiv nicht perfekt zentriert ist, können am Rand oder in ein oder zwei Ecken ziemlich niedrige Werte auftreten – diese sind in die Mittelwerten hier mit eingegangen – die ziehen also das Gesamtergebnis deutlich RUNTER!

Beruhigend für mich war, dass das modernste Objektiv, das auch noch vom Hersteller für genau diesen Sensor entwickelt wurde (Sony GM 85f1,4) tatsächlich – und schon bei f4,0 – das Beste ist und der Mittelwert bei 98% der Nyquist-Frequenz der 60 MP-Kamera liegt – wofür hätte ich sonst das viele Geld hingelegt? (…auch ist das Objektiv im Zustand ja praktischt neu und wird ohne Adapter benutzt!)

Aber nun zu unserem Kandidaten Angénieux 90mm f2,5:

Der Veteran, der ja bis zu 69 Jahre alt sein könnte, mit Gebrauchsspuren, Putzspuren, Staub in der Optik und einer der ersten „Nachkriegsvergütungen“, erreich im Maximum (f11) einen Mittelwert von 85% Nyquistfrequenz über die gesamte Bildfläche (2.708 LP/BH) und in der von mir gewählten Vergleichsgruppe (praktisch alles Optik-LEGENDEN!) dauert es 26 Jahre, bis ein 90er Objektiv erscheint (VivitarSerie1 90f2,5), das das Angénieux in der Maximalauflösung übertrifft. Das zehn jahre später (1961) herausgekommene Zeiss Sonnar 85mm f2.0 zur Contarex ist in der Auflösung nicht besser – bei Offenblende f2.0 zeigt es eine Schwäche in der MTF-Kurve, die bei sehr niedrigen Frequenzen (links im Diagramm) relativ steil abfällt. Nach dem VivitarSerie1 gibt es in meiner Sammlung erst 40 Jahre später ein Objektiv, das dieses übertrifft! (Das Apo-Makro-Elmarit 100 übertrifft es nur bei Offenblende.)

Die größten Fortschritte in der Foto-Optik wurden seit den 1950er Jahren ganz offensichtlich in der Offenblenden-Auflösung und dem Randabfall (bei niedrigen Blenden) gemacht.

Im Anhang kann man Messkurven  einiger der Objektive ansehen.

Hier die Darstellung der einzelnen Messpunkte bei der optimalen Blende (f11) am Angénieux 90mm. Hier sind die Auflösungswerte am Rand durchgängig (und sehr symmetrisch) etwas höher als in der Mitte:

Angén90f2,5_f11_Multi-ROI_N

Ich habe das neu fokussiert überprüft – offensichtlich ist es kein Zufall sondern in der Schärfe-Ebene tatsächlich reproduzierbar.

Eines der Meßergebnisse am Angénieux 90mmf2,5 ist aber in hohem Maße überraschend für ein Objektiv jener Zeit: die Chromatische Aberration (Farbfehler). IMATEST unterscheidet nicht zwischen Längs- und Quer-Farbfehler sondern misst den in der Bildebene auftretenden visuellen Farbfehler. (Das Apo-Kinoptik kann da nicht im Entferntesten mit halten – es hat einen 20-fach größeren Farbfehler als das Angénieux…)

Hier Vergleichsdiagramme für sechs dieser Optiken (1951 und jünger): das zeitgenössische Contarex-Sonnar hat einen ca. 2,5-fach größeren Farbfehler, das nagelneue SonyGM ist graduell besser .. hier ist allerdings die eigentliche Sensation das VivitarSerie1 mit Farbfehlern nahe Null! Achtung: die Ordinaten-Maßstäbe in den Grafiken sind leider nicht gleich… bitte links auf die vetikale Achse schauen!

Ang90_Vergl_CA1

Ang90_Vergl_CA2

Ang90_Vergl_CA3

Fazit:

Angesichts der guten Auflösungsergebnisse auch über das ganze Bildfeld und der extrem guten CA (nicht nur für diese Zeit) war das Angénieux ein herausragendes optisches Produkt. Die optischen Berechnungsmethoden, die Angénieux während des Weltkrieges entwickelt hatte, sollen ja (manuell!) 10-fach zeitlich effektiver gewesen sein, d.h. dort konnte man in gleicher Zeit 10-mal mehr Varianten berechenen, um die beste Lösung zu finden! Das vorliegende Ergebnis widerspricht dem nicht… Das Modell wurde bis 1968 geliefert (für Alpa alleine – in Fassung „E4“ – wurden 1.500 Stück gebaut). Der Kompromiss, den Angénieux machte, um diese exzellenten Leistungen zu erzielen, lag offensichtlich darin, dass er -1,0% Verzeichnung zuließ! Für ein Portrait-Objektiv kein wirklich großes Problem.

Das Angénieux 90mm f2.5 für Alpa (daher die Alpa-interne-Bezeichnung „Alfitar„) ist der zweite Typ mit 90mm Brennweite: Typ Y12. Es ist ein Vierlinser – 4 freistehende Linsen, Ernostar/Sonnar-Typ – mit einer Nachkriegs-Einschicht-Vergütung. Die Verarbeitung (Voll-Metall-Fassung, vernickelt) ist olympisch und auf ewige Haltbarkeit ausgerichtet. Die Glasflächen meines Exemplars entsprechen im Zustand natürlich dem Alter von fast 70 Jahren – aber gut gepflegt, wenig Putzspuren, kein Schleier.

Gegenüber gestellt sind in der Auflösungs-Tabelle und in Kurven im Anhang (s. unten)  andere Legenden der Foto-Optik im zeitlichen Abstand von jeweils 7 – 20 Jahren bis hin zum State-of-the-Art-Boliden von Sony (2018), der 11 Linsen und Nanobeschichtung (und 11 Blendenlamellen) hat!

Wenn man sich die Auflösungsmessungen an guten Optiken der letzten 100 Jahre ansieht, dann stellt man fest, dass die axiale Auflösungsleistung (Bildmitte)  praktisch auch mit manueller Berechnung  (bis Ende der 1950er Jahre) fast „beliebig“ gut sein konnte – jedenfalls höher als jede analoge Filmemulsion (für normale bildnerische Zwecke) sie jemals ausnutzen konnte. Bei dem fast hundert Jahre alten Ernostar 100mm f2.0 erreicht bei Offenblende die Auflösung in der Mitte bereits die Nyquist-Frequenz der 42 MP Sony A7Rm2.

Der technische Fortschritt in den Linsenkonstruktionen durch neue Gläser und Asphären (bei großen Aufnahmeentfernungen!) drückt sich bezüglich der Auflösung weitgehend an den Rändern und in den Bildecken des Formates vor allem bei Offenblende aus, aber auch darin, dass die optimale Auflösung bei deutlich offenerer Blende erreicht wird. Aber Auflösung ist nicht alles!

Der Fortschritt in der Optik wirkt sich auch in Bezug auf höheren Kontrast bei den niedrigen Frequenzen über die ganze Bildfläche aus. (Zum letzteren trägt erheblich auch die immer raffiniertere Vergütung der Glas-Luft-Flächen bei.) Diese Kontrasterhöhung im niedrigen Frequenzbereich läßt die Bilder „knackiger“ aussehen. In den MTF-Kurven wird dieser Umstand sichtbar dadurch, dass die Kurve nicht von Frequenz Null (Kontrast = 1 ) linear bis zur Nyquist-Frequenz abfällt, sondern DEUTLICH darüber bleibt – sichtbar als „Bauch nach oben“ zwischen 0 und 2000 LP/PH. Moderne Objektive haben in diesem Bereich einen mehr oder weniger langen HORIZONTAL verlaufenden Bereich der MTF-Kurve, der sogar noch über den Wert 1 nach oben gewölbt sein kann (siehe Sony GM 85mm und Apo-Summicron-M 90mm bei Blende 5,6 im Diagramm ganz unten). Das Angénieux 90mm f2.5 besitzt einen sehr ausgewogenen MTF-Kurvenverlauf offen und abgeblendet (damals hatte auch Ang. schon MTF-Messungen eingesetzt!). Einen „Bauch“ in der MTF-Kurve hat sogar schon das alte Ernostar 100 f2.0, und as VivitarSerie1 90mm f2.5 (1977) hat sogar auch schon einen kleinen „Überschwinger“ über den MTF-Wert 1. Es hat außerdem die höchste Auflösung aller Objektive mit 85 – 100 mm Brennweite, die ich bisher gemessen habe (mit Ausnahme des nagelneuen Sony GM 85mm f1.4 von 2018) und dabei Verzeichnung Null und CA nahe Null (über ganze Bildfläche). Ein Ausnahme-Objektiv seiner Zeit (… und massiv wie ein Panzer). Schon Modern Photography hatte es seinerzeit als das „best ever“ gefeiert.

Noch eine kurze Anmerkung zu den drastisch geringeren Ecken-Auflösungen bei Offenblende der Objektive aus den 20er bis 60er Jahren – verglichen mit ihrer hohen zentralen Auflösung. Ecken-Auflösungswerte von 500 – 600 Linienpaaren pro Bildhöhe bedeuten ca. 40-45 Linien/mm in der uns früher geläufigen Zählweise. Wenn man sich Testergebnisse aus den 60er und 70er Jahren ansieht (Modern Photography), so werden dort bei Offenblende Werte von 45 Linien/mm am Rand als „Excellent“ bewertet, selbst im Zentrum erreicht kaum ein Objektiv mehr als 80 Linien/mm. „Minimum-Standards“ (=“Acceptable“) lagen in den Ecken bei 20 – 36 Linien/mm. Nach meiner Auffassung war auf Analog-Filmemulsion die nutzbare Auflösungsgrenze bei ca. 1.200 LP/BH (35mm-Film) – und das entspricht genau 100 L/mm.

Das heißt, auch: die alten Optiken, deren Auflösungswerte bei Offenblende am Rand hier sehr schwach aussehen (Ernostar, Angénieux, Contarex Sonnar), sind damit in der Praxis normaler Bild-Fotografie schon sehr gut.

Anhang:

Angén90f2,5_f2,5_VglN
Angenieux 90mm f2,5 bei f2,5: Kantenprofil, MTF-Kurve und Auflösung

Angén90f2,5_f11_VglN

Ernostar100f2_2,8_Vgl
Ernostar 100mm f2,0 bei f2,8: Kantenprofil, MTF-Kurve und Auflösung
Ernostar100f2_11_Vgl
Ernostar 100mm f2,0 bei f11: Kantenprofil, MTF-Kurve und Auflösung
CtrxSonnar85f2,0_f2,0_Vgl
Contarex Sonnar 85mm f2,0 bei f2,0: Kantenprofil, MTF-Kurve und Auflösung
CtrxSonnar85f2,0_f11_Vgl
Contarex Sonnar 85mm f2,0 bei f11: Kantenprofil, MTF-Kurve und Auflösung
VivitarSeries1-90f2,5_f2,5_Vgl
VivitarSerie1 90mm f2,0 bei f2,5: Kantenprofil, MTF-Kurve und Auflösung
VivitarSeries1-90f2,5_f8,0_Vgl Kopie.png
VivitarSerie1 90mm f2,5 bei f8: Kantenprofil, MTF-Kurve und Auflösung
Apo-SummicronM_90f2_f2,0_Vgl
Apo-SummicronM ASPH 90mm f2,0 bei f2,0: Kantenprofil, MTF-Kurve und Auflösung
Apo-SummicronM_90f2_f5,6_Vgl
Apo-SummicronM ASPH 90mm f2,0 bei f5,6: Kantenprofil, MTF-Kurve und Auflösung
SonyGM85f1,4-MF_f1,4_Vgl
Sony GM 85mm f1,4 bei f1,4: Kantenprofil, MTF-Kurve und Auflösung
SonyGM85f1,4-MF_f4,0_Vgl
Sony GM 85mm f1,4 bei f4,0: Kantenprofil, MTF-Kurve und Auflösung