Sony A7R4 (61 MP) vs Agfa APX100 (B&W-Film) – Analog vs Digital comparison

This article describes, how I made the resolution-power of lenses digitally measurable on analog film  and COMPARABLE to the data, which are directly measured on digital sensors – using the same algorithm: IMATEST.

Since a long time I am looking for an experimental set-up, which allows me to understand, how the information content of the exposure on an analog film compares to the digital data from a digital sensor – looking through the same lens. Resolution being the main point of interest for me in this case.

Just to give you a quick impression of my results I show here the resolution charts from IMATEST on B&W-film (Agfa APX100) and on Sony A7R4 (61 MP), using the same Olympus SLR-lens OM 28mm f/2.8 (introduced 1973) – (the method will be explained in detail further down in this article):

Fig. 1: Resolution-chart, generated with Olympus OM Zuiko Auto-W 28mm f/2.8 lens on black and white negative film (Agfa APX100) and filmscanner reflecta RPS 10M – MTF30-resolution-values from center to corner for all apertures – source: fotosaurier

I do not think, that these are the „real“ limiting MTF30 resolutions values of the lens. These may be definitely higher – especially in the range betweenf f/5.6 and f/16. For me the purpose of the method is, to clarify the behavior of many (legendary!) historical lenses which show very low resolution values especially in the corners and at stop-down values of f/16 or f/22.

Let us take a look at the digital picture, taken with the Sony A7R4:

Ima_GRAPH_OM28f2,8_A7R4
Fig. 2: Resolution-chart, generated with Olympus OM Zuiko Auto-W 28mm f/2.8 lens on 62 MP-Sensor of Sony A7R4 – MTF30-resolution-values from center to corner for all apertures – source: fotosaurier

Do not let you confuse by the blue lines on different levels, which represent the Nyquist-Frequency in each set-up: the Sony’s sensor has a Nyquist Frequency of 3.168 LP/PH (linepairs per picture hight) – the filmscanner which was used to digitize the analog picture (reflecta RPS 10M) was used at its max. resolution of 5.000 ppi – that corresponds to 2.383 LP/PH as a Nyquist Frequency and delivers ca. 33 MegaPixel pictures.

There is no affordable filmscanner with higher resolution on the market!

This means: the Nyquist Frequency of the Sony Digicam is exactly 25% higher than that of the scanner, which we used as a A/D-converter for the B+W-negatives on the APX100-film.

The highest resolution in the film-based pictures generated with the analog-digital data-processing chain in Fig. 1 is very close to or above the Nyquist Frequency of the scanner – and over the full format area of 24mm x 36mm the resolution in the analog film is gathering very closely under or around this Nyquist Frequency at nearly all apertures, with the exception of open aperture f/2.8 where it is 10-20% lower.

In contrary to that, in the digital pictures taken with the Sony Sensor (Nyquist Frequency: 3.168 LP/PH) the resolutions vary strongly between corners and center and in between (part way) – and for the different apertures.

Let’s look at the center-values of resolution (green curves in Fig 1 + 2): between f/2.8 and f/11 the analog and digital values develop quite constant around the respective Nyquist Frequency, which explains, that the center values on film are 25% lower than on the 62 MP-sensor. But: The drop-off in resolution at f/16 and f/22 on the digital sensor is dramatical and shows that it is a sensor-created artefact.

Looking at the grey curves in Figs 1 + 2: „part way“ between center and corner represents the biggest area of the picture, dominating the perception of the picture! Here the MFT 30 resolution values are higher on film at nearly all apertures in spite of the lower Nyquist Frequency.

The most dramatical difference between analog and digital pictures, however, is – as expected! – in the corners (yellow curves on Figs 1 + 2):

For a better understanding I put the corner-resolution of film and sensor together in one graph:

Fig. 3: Olympus OM 28mm f/2.8 corner resolution on Sony A7R4 (yellow curve) and b+w-film APX100 (grey curve) – source: fotosaurier

The corner-resolution on the sensor with 25% higher Nyquist Frequency starts at f/2.8 at 50% of that of the analog film, exceeds the absolute analog value at f/8, peaks at f/11 with 82% of the sensors Nyquist and drops below the analog-value at f/22, whereas the analog-resolution on film reaches 95% of Nyquist at f/5.6 and stays at about 90% until f/22.

What the resolution-graphs here clearly show: also the very low resolutions in the corners (and even part-way!) of the digital sensor (especially open aperture!) are an artefact of the sensor! We know, that most of the effect is caused by the thick filter stack in front of the sensor. With this picture we know, that this happens not only with rangefinder-lenses, where the corners are literally BLURRED on the sensor – but also with SLR-lenses as in this case! With rangefinder-lenses the difference in corner resolution between analog (film) and digital (sensor) may be 6 to 7 … whereas with SLR-lenses I experience values of 2 to 3.

I confirm again: it is the identical lens in both cases! And these results are pretty much representative for many analog lenses! I will supply you with the results of many more lenses soon. There is one (rangefinder-)lens already analysed with the same method (link here).

EXPLAINING the Method in detail:

1. Extending the digital IMATEST lens testing method and software to pictures taken on analog film:

A. Measuring the optical performance on a digital sensor is facing several facts and influences, which are new and specific: pixel size, algorithm, problems of digital signal-processing systems like aliasing, additional optical elements in the optical path like filter stacks and micro-lenses!

The question: is there an essential influence of all these optical systems on the visual result in the picture over the picture-circle (Bildkreis), e.g. because of the varying angles at which the light-rays hit on the sensors between center and the farthest corner of the picture format or due to the additional optical elements introduced into the light-path?

In the case of RANGEFINDER-lenses we know, that there often is a strong influence of this. These lenses are often made for a very short distances between the last lens and the film – especially for wideangle- and standard-lenses. Little was known to me about historical SLR-lenses, which were never planned and calculated for the use with modern digital sensors. The degradation of the picture quality in the corners of rangefinder-wideangle-lenses is so dramatical, that it is clearly seen, that this is an artefact of the sensor, because we see sharp corners on film with the same lens.

Since several years I do quite a few measurements on historical lenses, using a high-resolution digital sensor with 62 Mega-Pixels, resulting in 60,2 MP effectively on Full Format (35mm stills).

Until now I did not know, whether the measurement of my historical SLR-lens is falsified due to artefacts, generated by the digital recording system. The work, described in this article, was done, to clearify this situation.

I just want to know: how does picture quality of historical SLR-lenses on the analog film compare measurably to that delivered by digital sensors?

Digital cameras are really big number-crunching-machines! And with the right software, I can use the numbers to generate a numerical picture of  the optical quality of the lens-sensor-combination. IMATEST is such a software and it uses standardised TARGETS to do that. I use the following target:

DSC03033_Macr-Yashica_55f2,8_5,6-foc Kopie
Fig 5: SFRplus target for Imatest – it’s height is 783 mm between the horizontal black bars, which means, that the reproduction ratio on film is 33:1 – source: fotosaurier/Imatest – original information graphics from IMATEST

Over years I did – like many other amateur-photographers – compare real-world photos of analog vs. digital processing. But I was never satisfied, because this method gave me only subjective impressions – it did not create reproducible figures, to generate a precise description of the results!

I collected intensive experience with IMATEST on more than 150 lenses over meanwhile 5-6 years using the digital pictures generated by digital sensors (4,9 to 102 Megapixels) of seven different DIGICAMS. During this time, my Standard Digicam to compare lenses was (and still is) Sony A7R4 (62 Megapixels) – since it had arrived in the market (2018/19).

IMATEST (Studio) software delivers MTF-based resolution data – as it can do that separately in three RGB-channels, it also delivers lateral CA-data. Using the Target structure of Fig. 5, the software selects 46 local areas, and runs the MTF-measurement automatically for all these 46 areas. The following picture demonstrates the automatic areas, which are typically selected – but you could choose others as well:

ROI-chart (standard)
Fig. 6: The 46 magenta rectangles (called „ROI„) frame the Edges in the target, at which the 46 MTF-measurements are made – source: fotosaurier/Imatest

These are the curves, which are generated from each digital picture (black&white):

Zusammenstellung_IMATEST_A7R4_OM28d2,8_2,8
Fig. 7: Summary of the  IMATEST-results for the OM28mm f/2.8 at open aperture f/2.8 on Sony 62 MP-sensor (A7R4) – explanation see text beneath – source: fotosaurier

The upper left curve shows the edge-profile at center of the target (ROI no. 1, which is the left (vertical) edge of the center square in Fig. 6). From this graph the edge-rise between 10% and 90% is taken from the x-coordinate in pixels. The lower left curve is the MTF-curve (contrast over spatial frequency) for the same location. From this graph the MTF30 value (Frequency at 30% contrast) is taken: follow the horizontal line at 0,3 MTF-value to its section with the curve and take the frequency on the abscissa. The right curve shows the MTF30-values of ALL 46 ROIs plotted over the distance from the center in the 35mm-fframe.

I have resumed the IMATEST test-method in more detail in this article here in my blog!

B. Digital measurement of resolution on analog film

Now I decided to make the following experiment:

  • Take a photograph of the IMATEST-target on analog film;
  • digitize the picture with a film-scanner;
  • analyse the resulting digital picture with IMATEST.

For the tests, which I describe here, I used the following hardware:

28mmf2,8-on-OM4Ti_DSCF1655_blog
Fig. 8: Analog SLR Olympus OM-4 Ti with Zuiko Auto-W 28mm f/2.8, loaded with „fresh“ Agfa APX100
  • Camera for the shooting on analog-film: Olympus OM-4Ti
  • Lens: Olympus Zuiko Auto-W 28mm f/2.8 (Ser.no. 232073)
  • Film: B&W negative film AgfaPhoto APX100, iso125, developed in Rodinal 1+25 (8′)
  • Scanner: reflecta RPS 10M film scanner

The OM-4Ti (about 25 years old) and the lens (nearly 50 years old) work still perfect. I let the OM-4Ti automatically generate the exposure time: from 0.4 seconds to 1/250 seconds. The densitiy of the negatives was pretty constant on the film-strip! I use a sturdy tripod, which is made for use with long astronomical telescopes.

With this method I hope to use the full analyzing-power of IMATEST-software on a picture-frame, which is generated through the lens WITHOUT the typical artefacts, which digital sensors MAY generate in the optical path of a historical lens.

ON THE FILM we have now the IMATEST target-pattern, which allows to make a fast and powerfull analysis of optical data over the full picture frame – also very close to the edges and into the corners. This pattern is superimposed by the typical grain-structure of the light sensitive layer – and potential light-diffusion-effects within the film thickness. Both (analog) effects LIMIT the resolution, which can be achieved on FILM.

My first and major interest was always focused on the observation of the enormous difference between the center-resolution (see Fig. 7), which is digitally measured on A7R4 with ca. 3,000 LP/PH or higher) and corner-resolutions of <200 to 600 LP/PH on the sensor .

The question is: are the low values on edges and in coners of the frame, measured with the digital sensors, an artefact, caused by the different light-path? We know definitely about these effects with rangefinder-lenses, which have a very short back-distance between last lens and film, causing big trouble on sensors of mirrorless cameras. This is today well known, to be mainly caused by the thick filter-stacks in front of the sensors (creating field-curvature and cromatic aberrations with analog lenses).

It has been shown, that this can partly be „cured“ – or at least reduced – by reducing or deleting the filter-stack, and/or putting a positive lens (so-called „PCX-filter“) in front of the lens-sensor-combination.

The 35mm-negative-film:

I made my first attempts to photograph the IMATEST-target on film with

  • b&w-film Agfa APX100, iso 100

which is still available as „fresh“ product. For this first step I decided to stay with b&w-film, because I can process it myself under controlled conditions. With colour negative film I would have an external influence, which I could not control! Just for resolution this means no restriction in the information, because CA-errors also blurr the B&W-picture!

I did the devellopment of the b&w-film myself with Rodinal.

The A/D-converting:

The negatives were digitized through my film-scanner reflecta RPS 10M,which offers a maximum linear resolution of 10,000 pixel per inch (PPI).

To me, this step seemed to be very important: to avoid new artefacts from the digitizing algorithm. So I chose a spatial frequency, which is higher than the expected limiting spatial frequency of the film: I set the scanner at 5,000 ppi. On pixel-level this corresponds to an imaging-sensor of ca. 33.7 MP (for 24mm x 36mm).

From my earlier estimations I had found, that a normal recording film for general imaging purposes should correspond to a digital FullFormat-sensor with 20-12 MP.

The picture height, which the scanner digitally delivers (24mm minus a bit of crop to frame the target safely), was 4,676 pixels and so the „Nyquist Frequency“ of the scanner set-up corresponds to 2,338 LP/PH – corresponding to an effective sensor-size of 32,7 Mpxls.

Fig. 7 shows the b&w-picture, which was generated with the scanner:

AGFA100_OM28f2,8_2,8_H4536
Fig. 7: Scanner-output from the b&w negative-film Agfa APX100 from Olympus OM 28mm f/2.8 at full aperture f/2.8. Picture-hight of this original scan is 4.676 Pxls. You see, that the light-fall-off of this lens into the corners is very moderate … and the linear distortion with exactly 1% acceptable as well! – source: fotosaurier

Let’s have a closer look into the structure of this image – in Fig. 7a you get an impression of the grain structure of the films emulsion at about 200% enlargement of the 33 MP-image:

Enlargement-Film-200%
Fig. 7a: Overview of the grain-structure at ca. 200% enlagement of original scan in Fig. 7. The pixel-size here is 5,3 µm – the grains of the film are bigger than the pixels – source: fotosaurier

Following picture is the MTF-curve of the analog image „as scanned“ (in the center of frame):

Fig 8: MTF-curve in. Center (ROI no.1) of OM-Zuiko 28mm f/2.8 at f/2.8 – source: fotosaurier

The „noise“ in the curve is caused by the film-grain, which is about the same size as pixels.

Film_3024-pixel-height_at-800%
Fig. 9: Here we look at about 1,000% into the pixel-structure of the scanned image. At the edges of the dark rectangle (where the resolution is analysed!) the grain-diameter is about the same size. Only some local „grain-clusters“ are considerably bigger – source: fotosaurier

Previous trials had shown, that with a film with this grain-structure, this digital image-size would give adequate results for MTF and resolution.

In the case of a digital sensor of a digicam I avoided generally to use RAW-data, which would have urged me to use my own very personal „development-parameters“ in Lightroom or other software to generate the final picture. I use OOC-JPEG-Data at „Standard“-settings, due to generate conditions (all important parameters set to „zero“), which are transparent and reproducible for everybody with the same camera-model! That means: it would also have been possible to create pictures with much higher resolution results in Imatest, e.g. by setting higher sharpening-parameters or the „clear“-mode.

Now with a film-scanner I had to go myself through a very intensive process of defining the „development-parameters“ in Silverfast. Starting with the setting to 5.000 ppi for the basic scan-resolution. With 10.000 ppi, which is offered with this model, you will get no REAL increase in EFFECTIVE resolution.

However, using the „Multiple Scan Mode“, you extend the accessible resolutions above the „Nyquist Frequency“, which would be 2.383 LP/PH, corresponding to a Picture size of 32,7 MP

My target was, to reach about the same level of resolution in the center of the scanned images on analog film as with the Sony A7R4 images, which means in the range of 3.168 LP/PH, which is the Nyquist Frequency of the Sony Sensor.

This corresponds with a resolution of 260 Lines/mm.

I came close to this with the following settings:

Fig. 10: Scan-parameters in Silverfast 8 on film-scanner RPS 10M – source: fotosaurier

See the complete results here:


Fig. 11: Analog on film resolution results of Olympus OM 28mm f/2.8 SLR-lens with b+w-film APX100, scanned with RPS 10M film-scanner – source: fotosaurier

The interpretation of this in comparison with the measurement-results on the 62 MP-sensor of the Sony A7R4 (Fif. 2) has been given in the first section of the Article.

Finally I asked myself, whether a PCX-filter (lens) could improve the resolution-artefacts which are found on the sensor? But I found no real positive effect.

Fig. 12: Resolution of OM 28mm f/2.8 lens with PCX-3m lens on the Sony A7R4-sensor: no improvement at all – source fotosaurier
Fig. 13: Soon I will enter a new article, showing the performance of this wideangle-lens on seven different cameras – link not yet available … stay tuned!

Copyright „fotosaurier“

Herbert Börger, Berlin, November 2023

My Crazy Lenses – Topcor R 30cm f/2.8 and its Modern State-of-the-Art Counterparts – „Supertele-Lenses“

  1. Travel on my time-machine
  2. The known Facts – Topcor 30cm f/2.8
  3. Topcor 30cm f/2.8 – Optical Performance
  4. The Reference: Canon EF 300mm f/2.8 IS USM
  5. Three more 300mm f/2.8-teles

DSCF2458_Alle300f2,8-5_blog
Fig 1: From left to right – Topcor R 30cm f/2.8, Arsat Yashma 300mm f/2.8, Tamron SP LD (IF) 300mm f/2.8, Minolta AF Apo-Tele 300mm f/2.8, Canon EF 300mm f/2.8 L IS USM

Attention: I part from my „crazy lenses“ due to my age: it takes too much time to take care for my optical baybies! If you are interested in the Topcor R 30cm f/2.8, please leave a price-proposal in the comment-section (this is seen only by me) or by mail to webmaster@fotosaurier.de

1. On my time-machine:

I own the Topcor R 30cm f/2.8, which I am looking at here, since a few years – but I have not used it too often.  It is very heavy, long and dark, giving the impression of a tank-breaking weapon: you definitely will get trouble at any security check nowadays … and in the best case you will earn compassion instead of admiration! Too bad, because it is an ingenious piece of optical engineering.

Information about Topcor lenses today are rare and not always reliable. I will restrict myself to reliable information and I will try to verify legends … or destroy them.

So I entered my time machine and travelled back into the year 1958. I was 13 years old at my arrival there – and at the Topcon (Tokyo Kogaku) factory I met a team of innovative engineers, who were fanatically burning for the QUALITY of their products – and really proud of it! The year before (1957) they had introduced a new SLR-camera (Topcon R), which was designed in Bauhaus-style, i.e. with clear and modern lines – and they were ready to ignit a firework of innovations around the SLR-concept within the next few years (from first-in-industry TTL-exposure-metering to first electric winder).

And they had introduced a line of lenses for this SLR-system-camera, among which the Topcor 30cm f/2.8 peaked out. Another „first-in-industry“-innovation.

I looked around in the photo-stores and could not find any Canon- or Nikon-SLRs there: the dealers told me, that both companies were just bringing out SLRs. It seemed, that the Topcon-people had considered the German SLRs, which were already on the market, as their competition. Personally at that time I was already a SLR-user (of my father’s Contaflex – which means, that from time to time my father was still allowed to use it himself).

Everybody, who is acqainted with the rules of the market, would have expected, that shortly after an innovation like the Topcor R 30cm f/2.8, the major competitors would bring out a similar product.

But that did not happen – so I returned in my time-machine. Finally I found out, that it took the new japanese competitors more than a decade! And there was no comparable Lens in Europe, as far as I could see. 13 years later Nikon presented a prototype, to be tested during the Olympic Winter Games of Sapporo in 1972.

The real next step was taken by Canon with a 300mm f/2.8 Lens for their new FD-System, using a lens made of FLUORITE in 1973 (some say 75)! This was finally 16 years after the arrival of the Topcor-lens … and just in that year, when Topcon stopped the production of their supertele-lens.

2. The known facts:

This Topcor R 30cm f/2.8 monster-tele-lens with 300mm focal length was presented to the world in 1958 („Topcon Club“ says 1957!) – one year before Canon or Nikon started to produce any SLR – and 13-16 years before any other lens- or camera-maker presented such a fast 300mm tele-lens. Not only at the 1964 Olympic Games in Tokyo but all the time until 1972 it was without any competition. As a consequence, there even was produced quite a number of lenses with Nikon mounts! Next to Topcon, Canon brought out its Canon FD 300mm f/2.8 S.S.C. Fluorite lens in 1973 – setting the level for professional superlele-lenses for the next decades and until today.  Just a few years later Topcon went completly out of the business with SLR-cameras and lenses. Sad, but even the extensive book „Topcon Story“  by Marco Antonetto and Claudio Russo (1) does not answer the question „why?“.  Today Topcon is a market-leader in geodesic instruments.

Stephen Gandy (3) estimates –  cameraquest.com  – that 700-800 lenses have been produced in total during 18 years of production.

Topcor-R-300f2,8_DSCF2335_blog
Fig. 2a: R.Topcor 1:2.8 f=300mm on Topcon SuperD- source: fotosaurier

Titel_DSCF2320
Fig. 2b: R.Topcor 1:2.8 f=300mm – source: fotosaurier

R328cut
Fig. 2c: Lens scheme of Topcor 1:2.8 30cm  – source: http://www.topgabacho.jp/Topconclub/lens3.htm

The lens is made of six single lenses in four groups – of which lens no. 6 (group 4) is the filter (diameter 39mm), which is, of course, part of the optical design! This filter is an early (maybe the first) example of a filter which is positioned in a slot in the rear part of the lens-body. In the book „Topcon Story“ (page 128) there is an error in the spreadsheet listing of the data of the R.Topcor-lenses: the data in the last line are the data of the „300mm 2.8“ and not of the f/5.6-lens. Here the no. of elements is „five“, which is correct, when you don’t count the filter as an active optical member …

The lens has a preset diaphragm and has a built-in sunshade (telescoping in two stages!). It is 383 mm long (from camera-flange to front-edge of the pulled-back sunshade – total length with shade pulled out is 477 mm)  and weighs 3.1 kgs (without front and rear caps). Measured at my sample (ser. no. 34.1359). The initial sales-price was $ 1.125,–. (In the literature  you will find: 415/412 mm length and 3.3 kgs weight).

It may be interesting to mention here, that right away from the introduction of the first Topcon-SLR, an extremely ambitious lens-program was planned – however, realized only partly. The Topcor R 13,5 cm f/2.0 (6 lenses) had also preset diaphragm and it was discontinued with the Topcon RE camera system – so it is said to be extremely rare. It has a yellowish color cast (due to rare-earth-glass?), not a big problem with todays digital cameras …

However, a 50mm f/0.7 lens, which is mentioned in „Topcon Club“ only, was never made for the SLR-camera market – maybe, this was one of the very early oscilloscope-registration-lenses, which are also known from Germany and GB even at WWII-times.

And a 1000mm f/7 catadioptric lens was only experimentally made in 1958.

„Topcon Club“ (2) writes about this:

„The interchangeable lenses which appeared with the appearance of TOPCON R are various kinds of the Auto Topcor of 35mm/100mm, and R TOPCOR (a preset diaphragm) of 90mm/135mm/200mm/300mm among these – although the bright thing and the dark thing were prepared about 135mm and 300mm – it should mention especially – it is the „high-speed lens“ of 135mm f2 and 300mm f2.8. 50mm f0.7 – such a bright lens was already completed during wartime by the Tokyo optics. Do you believe it ? Although possibly this grade was an easy thing, even so, the 300mm f2.8 lens will be an astonishment thing in 1957. I talked in detail on „the page of TOPCOR“ about this lens. We have to wait for marketing of the product of NIKON which is the next 300mm f2.8 lens at any rate till 1977. However, TOPCON did not build the super telephoto lens 500mm /800mm those days. Furthermore, the Refrector Topcor 1000mm f7 is appearing in the catalog in ’59. However, this was not launched regretfully.“

Later – from 1969 on – a RE Topcor 500mm f/5.6 telephoto-lens was even produced with automatic diaphragm and meter coupling!

Can such a fast long telephoto lens like this early 300mm f/2.8-design without Fluorite- or ED-lenses be any good – on the scale of professional photography? There are hints, that rare-earth glasses were used to make these lenses (also for the other famous 13,5cm f/2.0, also supplied since 1958). But I do not know details about this.

I will answer the question about the optical quality here – also comparing this lens with a modern top-notch tele-lenses like Canon EF 300mm f/2.8 L IS USM, which I personally classify as today’s state-of-the-art reference, supported by photo-friend Thomas, who borrowed his Canon lens to me.

Finally I will take a glance on a state-of-the-art modern astronomical refractor, which normally does perform at diffraction-limited resolution on stars!

Topcor 30cm f/2.8 – The Optical Performance on analog film (year 1969):

Stephen Gandy (3) wrote in his blog:

WIDE OPEN its resolution was 56lines/mm center and 34lines/mm at the edges.  By f/8 it was 80 lines/mm center and 65 at the edges.   Many normal lenses don’t achieve this sharpness — much less 300/2.8 leviathans !  Camera 35 summed it up by saying „INCREDIBLY FANTASTIC.“  I would have to agree.

(In the original text in Stephen’s blog, the reported resolution values are noted as „56mm“ or „34mm“. I have taken the freedom, to correct this to what it should read: lines per mm, „lines/mm“!)

The resolution values, which I use in my digital IMATEST measurements, typically are given in „Line-pairs per picture-height“ = „LP/PH“. Picture-height being 24mm with 24×36-format, you have to divide the „lines/mm“-values by two to get to „line-pairs“ – and then multiply with 24 to achieve LP/PH.

The highest given value of 80 lines/mm corresponds to 960 LP/PH stopped down to f/8 in the center or 760 LP/PH at f/8 at the edge – the lowest value 34 lines/mm with open diaphragm at the edge corresponds to 408 LP/PH.

What does that mean?

In 1969 the test results for resolution were measured on film – „Modern Photography“ used Plus-X Pan with standardized development – and the reading of the „just resolved“ line-pattern was done with a standardized enlarging glass … I personally used the method myself at that time, too, and it is quite reproducible as long as the same person does the reading … It is somewhat sensitive to the vision-capabilities of the reading person! And of course the grain of the analog film material (negative b&w film!) is the limiting factor for the resolution-reading on film for really high resolutions.

Today’s modern 24 MP-sensors deliver resolutions of 2,000-2,400 LP/PH using MTF30 (30% contrast) as  the parameter for reading out the resolution values from the MTF-curve. My Sony A7R4-Camera (62 MP), which I use for my measurements, has a Nyquist frequency of 3.168 LP/PH and delivers up to 3.800 LP/PH-readings with the best known lenses.

The following spreadsheet gives an overview on the physical data of the Topcor-lens and the other lens-monsters, analysed here:

300f2,8_physData
Fig. 3: Physical Data of the five 300mm f/3.8-Lenses – source: measured by fotosaurier

3. Topcor 30cm f/2.8 – Optical Performance

My IMATEST-Results of the optical properties of the Topcor R 30cm f/2.8 lens:

To exclude potential vibration-initiated degradation of resolution in my test-shots at these long focal-lengths I used my heavy (>10 kgs) and sturdy astronomical telescope-mount:

DSCF2537_Topcor_AufAstroMontierung_blog
Fig. 4: My massive astronomical lens mount – here with SonyA7R4 attached to Topcor 30cm f/2.8 – source: fotosaurier

DSCF2535_OnTargetTop
Fig. 5: The set-up keeps the lens and camera steady even at 0,4 seconds. – source: fotosaurier

Following you see the results of my IMATEST-measurements:

Topcor_R-300f2,8_Spreadsheet-23
Fig. 6: Optical measurment-results for Topcor R 300mm f/2.8 adapted to Sony A7R4 with 62 MP – resolution values given in LP/PH – source: fotosaurier

Topcor_R-300f2,8_Graph-23
Fig. 7: Resolution measurement-results for Topcor R 300mm f/2.8 as graph – source: fotosaurier

The lens is unique at that time regarding to „speed“ – an extremely ambitious piece of optical engineering. Remind, that the distortion is practically zero and the CA-area in the center 0,8-1,4 pixel – 1 pixel at Sony A7R4 is 3,8 microns on the sensor!

What is center, what is part way and what is corner? In the following graphs from IMATEST you see: „Part-Way“ is the large part of the picture extending close to the narrow side (left/right). „Corner“ is the narrow area outside the second dotted circle on the picture below.

DSC07122_Topcor300f2,8_8,0_Multi-ROI_2023-02-04_01-00-54
Fig. 8: „Center“ resolution is calculated as mean from the values inside the inner circle (in my setting always two values), „part way“ is the mean of all values between the inner and outer circle, „corner“ is the mean of all values positioned outside the outer circle – source: fotosaurier

DSC07110_Topcor300f2,8_8,0_Lens_MTF_2022-11-29_22-55-46
Fig. 9: Topcor R 30cm f/2.8 resolution plotted over radius of picture circle – source: fotosaurier

So, let’s compare the measurements to the value, that were given in analog times on film:

The comparison in the spreadsheet Fig. 10 shows: The  lens „out-resolves“ normal analog films by far! Stopped down it reaches the limits of the analog medium even at the edges of the frame! 

Analog-digital-resolution
Fig.10: „Camera35’s“ resolution measurements for Topcor R 30cm f(2.8 of 1969 on film compared with digital IMATEST values (at 30% MTF = „MTF30) with Sony A7R4 – source: fotosaurier

I found no real technical explanation, how Topcon-engineers managed to generate this phantastic lens at that time without ED/LD/AD/Fluorite-glass. There is a second tele-lens – the 13,5cm f/2.0, also introduced 1958, with first-in-industry potential – and finally the Topcor 2,5cm f/3.5 super-wide, which surprises with best-in-class resolution values (see my blog-article on historical 24/25mm-lenses!).

If somebody knows the secret: please, tell us!

Look at a sample picture taken with the Topcor at the end of this article at 65% enlargement size (see Fig. 24).

Now, let’s have a glance on some other historical Superteles:

Alle_300er_2,8_DSCF2573
Fig. 11: From left to right: Topcor R 300mm f/2.8, Canon EF 300mm f/2.8 IS USM, Minolta AF Apo-Tele 400mm f/2.8, Tamron SP (60B) 300mm f/2.8 LD (IF), Arsat Yashma-4H MC 300mm f/2.8

4. The Reference: Canon EF 300mm f/2.8 IS USM

Canon-EF_300f2,8_DSCF2451_blog
Fig. 12: Canon EF 300mm f/2.8 IS USM – source: fotosaurier

Canon EF 300mm f/2.8 IS USM is rated as the reference of this class of lenses.  In this case it is not the latest „Mk II“-version of it, which came out 2011 –  but the first version of 1999, which is tested here. It represents nevertheless already the top-class of the super-teles (as all its predecessors since 1973!)

Here are the IMATEST results of its optical properties:

Canon-EF_300f2,8-L-IS-USM_AF_Spreadsheet
Fig.13: Optical properties of Canon EF 300mm f/2.8 IS USM from my IMATEST-measurements, with autofocus – source: fotosaurier

And here the Graphs of resolutions center, part way and corner:

Canon-EF_300f2,8-L-IS-USM_AF_Graph
Fig. 14: IMATEST-Resolution (LP/PH) of Canon EF 300mm f/2.8 IS USM – center – part way and corners – source: fotosaurier

Not may comments necessary to this – the figures and graphs should speak for itself … Just to mention: the distortion at the Topcor-lens is even lower than that of the Canon – but both are neglectable for a supertele!

Canons leadership in this class of professional supertele-lenses was generated by the policy, not to drop a product into the market, which was „just possible“ at present, but to persue a consequent plan for the future: to solve the „secondary spectrum“-problem of long tele-lenses, which means to use extreme „anormal dispersionlens-materials, which do the job without optical compromising.

So in 1975 – 2 years after Nikons first presentation of its first 300mm f/2.8 ED-lens (which was not very convincing and had to be replaced four years later by the ED-IF-version) – Canon introduced their FD 300mm f/2.8 Fluorite-Supertele, in which they used a front-lens made of fluorite-monocrystal material (no glass!) and a UD-glass-lens. This lens was already praised close to perfect (absence of chromatic aberrrations). Canon accepted for this a compromise, which made the lens longer and heavier: to protect the soft and sensitive fluorite-crystal-material in the front lens, there was a fixed additional plane protection element of glass in front!

Finally new fluorite-glass-formulations became available, which allowed to drop the sensitive crystal-lens. Over the introduction of Autofocus (EOS – 1987) and still more glass-elements, Canon finally introduced the legenday lens EF 300mm f/2.8L IS USM in 1999 with very fast AF and image-stabiliser, which is tested here.

Enjoy the results!

5. Finally – three more 300mm f/2.8-teles:

  • Minolta AF APO-Tele 300mm f/2.8 (1985)
  • Tamron SP LD (IF) 300mm f/2.8 (60H) (1984)
  • ARSAT MC Yashma-4H 300mm f/2.8 (1990?)

For these three lenses I also have to thank foto-friend Thomas, who borrowed them to me!

5a. Minolta AF APO-Tele 300mm f/2.8 (1985)

Minolta-Apo_300f2,8_DSCF2460_blog
Fig. 15: Minolta AF APO-Tele 300mm f/2.8 – source: fotosaurier

This lens had a mechanical defect: the diaphragm could not be closed below f/5,6. However: in these lenses principally mainly the open aperture is really significant – why should you carry around such a weight, to make pictures with f/11?

Minolta-AF-Apo-Spreadsheet
Fig. 16: Optical properties of Minolta AF 300mm f/2.8 Apo – source: fotosaurier

Minolta-AF-Apo-Graph
Fig. 17: IMATEST-Resolution (LP/PH) of Minolta AF 300mm f/2.8 Apo – center – part way and corners – source: fotosaurier

This Minolta lens comes closer to the Canon-legend than any of the others – but with quite some distance in resolution in the corners open aperture.

Excelent lens!

5b. Tamron SP LD (IF) 300mm f/2.8 (60B) (1984-1992):

Tamron-SP_300f2,8_DSCF2475_blog
Fig. 18: Tamron SP LD (IF) 300mm f/2.8 (60B) – source – fotosaurier

This is the shortest and lightest lens of the quintuple, which arrived even one year before the Minolta – containing two low-dispersion (LD) lenses – with manual focusing:

Tamron-SP_300f2,8_Spreadsheet
Fig. 19: Optical properties of Tamron SP 300mm f/2.8 LD (IF) 60B – source: fotosaurier

Tamron-SP_300f2,8_Graph
Fig. 20: Imatest resolution graphs of Tamron SP 300mm f/2.8 LD (IF) 60B – source: fotosaurier

Tamron – third party winner: Great Lens!

5c. ARSAT MC Yashma-4H (1990?):

Yashma_300f2,8_DSCF2478_blog
Fig 21: ARSAT MC Yashma-4H – source: fotosaurier

I do not know much about this lens. Funny about it is to me, that in most cases, when it is offered as a used lens, it is given the addendum „sovjet lens„! In 1990, when it was delivered first (I saw other sources with the date 2007 …) the Sovjet Union no longer existed – which means that, ARSAT being located in KIEW, the lens has UKRAINIAN roots.

As far as I know, it was generally produced in Nikon-mount.

ARSAT_Yashma_300f2,8_Spreadsheet
Fig. 22: Optical performance of Arsat MC Yashma-4H 300mm f/2.8 – source: fotosaurier

ARSAT_Yashma_300f2,8_Graph
Fig. 23: Resolution graphs of ARSAT MC Yashma 300mm f/2.8 – source: fotosaurier

Open aperture and stopped down the lens is convincing in the center – about 10-15% below the other superteles – but with still very good CA in the center.

From f/4.0 it is also very good in the large part of the frame – just 10% below the Topcor.

In the corners it is on par with the Topcor open aperture – but it does not improve so much while stopping down. For analog film use it was also a good lens – with exception of the softer corners with typical CA-values of non-apochromatic lenses … and a much higher distortion than all the other superteles.

What about apochromatic correction in supertele-lenses?

Lenses of 300mm f/2.8 need apochromatic correction to be really sharp. The chromatic aberrations („secondary spectrum“) are the major restictions in sharpnes for these long focal lengths all over the frame! All these lenses, tested in this report, have apochromatic correction – in varying degrees of perfection! In the ARSAT Yashma the apo-correction is only partly successful.

Herbert Börger

fotosaurier, Berlin 13.02.2023

Literature:

1- „Topcon Story – Topcon Enigma“ by Marco Antonetto and Claudio Russo, by Nassa Watch Gallery, Collectors Camera Publishing, CH 6907 Lugano, Switzerland – 1997

2- Web site „http://www.topgabacho.jp/Topconclub/FPslr1.htm

This, the first super fast long telephoto lens produced for any camera system world wide, came to the market in 1957. This was a large and heavy lens, with a 130mm maximum diameter, a length of 412 mm and a weight of 3.3 kg. The optical design was one of 6 elements in 4 groups. The selling price, at the time, was 135,000 Yen making it the most expensive lens on the market. Special filters slide into a slot at the rear of the lens barrel and this lens was probably the first to use this method. Unlike the 135mm f2 R Topcor, this lens was listed in catalogues into the later half of the 1970s. Because of it’s large aperture it was chosen as the official lens of record for the Tokyo Olympics. An odd thing concerning this lens is that many of those remaining have been modified for the Nikon mount, while those with the original Topcon mount are very scarce. The early lens case was made of leather but later on Topcon began supplying a hard case with the TOPCON emblem promontory displayed. The R Topcor 300mm f2.8 lens still compares favorable, with regards to regards to sharpness and contrast, to modern lenses with fluorite elements. Today this lens is almost forgotten but was highly praised in former times.

3- Web site of Steven Gandy: „https://www.cameraquest.com/top30028.htm“


Fig. 24
: Mathäuskirche in Hambühl, seen from 1,2 km distance with Topcor 300f2,8  (taken at f/5,6 with Sony A7R2 at iso800) – narrow vertical crop of nearly full frame, which you see here at about 65% enlargement – „ooc“ – no post-treatment of the picture) – source: fotosaurier

Two crazy lenses of the 1950s – Angénieux 50mm f/0.95 and Carl Zeiss Jena Biotar 50mm f/1.4 for 35mm Cine-Format – plus Canon Lens 50mm f/0.95 from end of 60s

A few weeks ago I was blessed, having an Angénieux 50mm f/0,95-lens and a „Biotar 50mm f/1.4″, at the same time in the same place !

An Angénieux 50mm f/0,95-lens in perfect optical quality and with aperture-mechanism  and rehoused into a perfect Sony-E-body, focusing to infinity and ready for measurement in my optical IMATEST-Lab…. this is really a „unicorn“!


Fig. 1: Ultra-rare 50mm f/0.95-lens for Cine 35 movie-format – this lens-series (10mm, 25mm and 50mm) founded Pierre Angénieux‘ high reputation in cinematic optics! – source: fotosaurier

The „Biotar 50mm f/1.4″, in great overall condition, which I even did no know about, before I saw it for the first time.

Biotar58f1,4-front_DSCF1765
Fig. 2: One of the best high-speed-lenses ever made in Jena – Biotar 50mm f/1.4 of 1955/56 for Pentaxflex AK-16 cine-camera system – professional performance for professional use! – source: fotosaurier

Photo-friend and co-nerd Thomas handed out both ultra-rare lenses to me for closer optical inspection. I am a happy man!

Fig. 3: Two very rare lenses at the same time in the same place … in my IMATEST-Lab! Sheer happiness! – Source: fotosaurier

  1. Angénieux 50mm f/0,95 (Type M1):

Thomas has proven, that it is possible to re-house the Angénieux-lens for general photographic use with infinity focus:

Fig. 4: The early super-fast Angénieux 50mm f/0.95 lens 0f 1954/55 here in a „Unikat„-version – the basic lens is directly fitted to E-Mount for Sony – source: fotosaurier

Starting in 1953 Pierre Angénieux brought out a series of lenses with f/0.95. In 1953 it was firstly the 25mm f/0.95 (which became the most famous Angénieux lens due to the use in NASA-spaceflights to the moon!) made for cine 16mm format and the 10mm f/0.95 for 8mm-cine.

A few months later he pushed out also a version for 35mm-cine: the 50mm f/0.95 – probably this was in in 1954 – originally in C-Mount. Hartmut Thiele dates this to 1955. It is important to understand, that this is not a lens made for still-photogray amateur use – but Pierre Angénieux showed here all his knowledge dedicated for professional cine-use. He went to the limits of everything, which was possible with glass-types and design- and production-methods at that time!

If you need more information on Pierre Angénieux, please look up my Blog article here!

Following my measurements on the IMATEST-target the picture-circle, that this lens covers is 37mm – so it is falling a bit short from the 43mm needed for covering the still-photo-35mm-full-format (24 x 36 mm).

DSC05014_Ang_50f0,95_0,95-foc1,4_Bildkreis
Fig. 5: Picture of IMATEST-Target through Angénieux 50mm f/0.95 at f/0.95 in the 24 x 36 mm full-frame of the Sony A7R4 – Source: fotosaurier

This test-set-up generates the following resolution-measurement results:

Fig. 6: Resolution at center/part way/corner of Angénieux 50mm f/0.95 on Sony A7R4 (60,2 MP-sensor – 9.504 x 6.336 pixels!) at standard distance full-frame (24×36) – Source: fotosaurier

In spite of the heavy darkening in the corners, the system does still generate results, but these readings are not very reproducible … these corner-readings are located clearly outside the picture-circle for this lens!

So I made a second set-up with the camera set a little bit further away from the target, so that the individual measuring areas move somewhat towards the center of the picture and do not suffer too much from the dark areas out of the picture circle of the lens.

Fig. 7: Angénieux 50mm f/0.95 moved a bit backwards from the target – measurement-areas (marked magenta rectangles) moved somewhat further towards the picture center – avoiding overlap with the dark corners – this picture is at f/8, showing a sharper limit to the dark corner-areas! – source: fotosaurier

Now the furthest measurement locations are at 82% of the full-frame picture radius, clearly inside the bright circle which this lens covers at 86% of full-frame radius!

The result is seen in the following picture:

Fig. 8: Resolution with refocussed Angénieux lens 50mm f/0.95. The corner-resolution-values are still located outside the Cine35-picture-frame!!! The „peak“ at f/4 in the corner reading is real – no error – never seen anything like this with any other lens! – source: fotosaurier.

In Chapter 4 at the end of the article I will ad thwe measuremts at cine-format for all three lenses (Super 35: 18,66mm x 24,89mm). This will give more realistic resolution-readings. The Super35 crop-mode on the A7R4 is  6.240 x 4.160 pixels.

2. Carl Zeiss Jena Biotar 50mm f/1.4:

About the same time, DDR-based Carl Zeiss Jena created a high-speed lens for its own Pentaxflex AK-16 cine-camera system in Pentaflex-16 mount.

It seemed logical to follow the already successfull BIOTAR-formula and it came out around 1955 or 1956 the Biotar 50mm f/1.4:

Biotar58f1,4-2_DSCF1757
Fig. 9: Carl Zeiss Jena Biotar 50mm f/1.4 for Cine-Format, arriving 1955/56 – Source: fotosaurier

Looked at with the sensor of the Sony A7R4, the picture-circle is a bit larger than with the Angénieux … there are only minimal dark corners!

Bildkreis_DSC05072_Biotar-50f1,4_1,4-just-foc
Fig. 10: Full-frame picture of IMATEST-target through Biotar 50mm f/1.4 at f/1.4 – Source: fotosaurier

Of course, we have here the same situation, that the corner-measurements are quite a bit outside the cine-picture frame of typically 16mm x 22mm:

Biotar_50f1,4_FF_Graph

Fig. 11: Biotar 50mm f/1.4 in the same frame as Angénieux seen in Fig. 7 – source: fotosaurier

I will also with this lens repeat the measurement, restricting the resolution-target to the cine-picture frame – see section 4 at the end of the article.

The results show for both lenses, that the resolution in the center is extremely high – even wide-open! Both lenses are extraordinary lenses of their time – the mid-1950s!!!

Unique: „first-in-industry“ point of view for the Angénieux 50mm f/0.95 in its extreme speed, without sacrifycing to the center resolution!

3. Canon Lens 50mm f/0.95 for rangefinder (Canon7) cameras with LTM 39mm – of 1969

As we are just talking about early historical high-speed lenses, the step to the famous CANON 50mm f/0.95 (for rangefinder) is logical. It is a step of 15 years in time – and this time the lens is really dedicated to 35mm still-photo full-format 24mm x 36mm!

Noch'nPaar_DSCF1775
Fig. 12: Angénieux 50mm f/0,95 of 1954, left, and Canon 50mm f/0.95 of 1969 / the normal still-photo-version here – Source: fotosaurier

Here is my comparable resolution-measurement with two samples of (s.n.18924 and s.n.22372) of the Canon 50mm f/0.95 on Sony A7R4 for this lens at full 24×36-format:

Crf_50f0,95_Graph
Fig. 13: Resolution-Graph of Canon 50mm f/0.95 on Sony A7R4 (60,2 MP) – Source: fotosaurier

Fig. 13a: Resolution-Graph of Canon 50mm f/0.95 on Sony A7R4 (60,2 MP) – Source: fotosaurier

To allow for the necessary rangefinder-coupling besides the huge rear lens, this lens is „cut free“ at the edge for this purpose.

Crf59f0.95_DSCF1687
Fig. 14: Cut-away at the 50f/0.95 Canon’s rear lens, to allow for the rangefinder-coupling! – source: fotosaurier

However, the 50mm f/0.95 lens was also released in a version for video cameras, with an additional engravureTV“ on the nameplate: consequently these lenses were delivered with C-mount. As these lenses do not need the rangefinder-coupling, the rear lens is not cut at the edge here.

Hopefully I wil be able to add a picture of the 50mm f/0.95 TV-lens rear section for comparison soon.

4. Finally: Resolution-Data of these Lenses, measured for the Cine Super35-format, which the Angénieux and CZJ Biotar Lenses are originally dedicated to – on all three lenses:

a) Angénieux 50mm f/0.95 – at Super35-format:

Fig. 16: Angénieux 50mm f/0.95 at Super35-frame on Sony A7R4 – absolutely phantastic for this „first-in-speed“  – source: fotosaurier

b) Biotar 50mm f/1.4 – at Super35-format:

Fig. 17: CZJ Biotar 50mm f/1.4 at Super35-frame on Sony A7R4 – absolutely phantastic for this „first-in-speed“  – source: fotosaurier

c) Canon 50mm f/0.95 – at Super35-format on Sony A7R4:

Canon lens f=50 mm f:0.95_A7R4_Super35_Graph
Fig. 18: Canon Rangefinder 50mm f/0.95 – primarily dedicated to still-photo 24×36 but also delivered as a TV-version – just a bit better than the Angenieux, but 15 years later! – source: fotosaurier

All three lenses have very low chromatic aberrations in the center but the Canon peaks out in maximum CA, Biotar and Canon are close to zero in distortion, while the Angenieux has around -1% distortion, which is still excellent for such an early, extreme lens!

5. Appendix:

Here you see all properties of the three lenses in detail – for 24×36 (full frame) and Super 35 (cine-format).

5-a1. Angenieux M1 50mm f/0.95 – FullFormat 24×36.

5-a2. Angenieux M1 50mm f/0.95 – Super35.

5-b1. Carl Zeiss Jena Biotar 50mm f/1.4 – FullFormat 24×36.

Spreadsheet_Biotar-50f1,4_FF

5-b2. Carl Zeiss Jena Biotar 50mm f/1.4 – Cine35.

Spreadsheet_Biotar-50f1,4_Cine35

5-c1. Canon Rangefinder 50mm f/0.95 – FullFormat 24×36.

Spreadsheet_Crf50f0,95_FF_sn18924

5-c2. Canon Rangefinder 50mm f/0.95 – Cine35.

Spreadsheet_Canon-50f0,95_Cine35

Herbert Börger

Berlin, 24.12.2022

My Crazy Lenses / Meine sehr speziellen Objektive – Focal length 24mm / Brennweite 24mm – FoV 84° – Part I

What was the real improvement in SLR-wideangle-lenses since the invention of the retrofocus principle over the last 65 years? Does my personal judgement from analog-film-days which lead to the definition of „legendary optics“ – which I kept in my lens-portefolio over that time – correlate with objective resolution-measurements? Here are my findings.

Actualisation: Im my first published version there was an error regarding the year of appearance of the Topcor 2,5cm-lens, which was communicated to me by a reader: thank you: it’s 1965 instead of 1959! But this difference does not change anything in my findings and conclusions …

1 – Introduction

24mm focal length is a real milestone in spreading the field of the view in wideangle lenses, coming down from FL 35mm over 28mm. For the SLR-camera-user this age started with the appearance of the retrofocus lenses in the 1950s. Several designers came out with this optical principle within three years – with Pierre Angénieux earning the honours of being FIRST (in time and quality – 1950, 35mm f/2.5) in this disciplin.

This is a report about SLR-lenses for 35mm-still-foto-cameras with focal lengths (FL) between 23mm and 25mm.

This is a report about a number of legendary lenses, which I happen to own or could lend from a friend  („phothograf“), most of them being milestones of optical engineering in their respective design-periods.

Drei_24er-Oldies_DSCF1838
Fig 1: three of the very first historical retrofocus-lenses with FL 24mm and 25mm – source: fotosaurier

Over the decades of my own practical use of SLR-lenses (of nearly all makers-brands!) has lead me to an understanding of the quality for normal photographic use.

This collection of test candidates does NOT claim to be a COMPLETE collection of all design legends of 24mm/25mm. There is a large gap in time with prime-lenses between 1984 and 2015. That means: the legendary first historical aspherical lenses in this range are missing in the comparison. If I ever will be able to get hold of them for a test, I would update this article. The modern lenses tested for comparison are (of course) all aspherical types!

In spite of the fact, that important legendary lenses of the 1980s and 90s are missing here, this report allows to draw some interesting conclusions about important steps in optical lens-engineering, which finally lead to Ultra-Wideangel-Lenses which have uniform resolution and contrast over the complete field of view (FoV).

I have always looked for a method to show the quantitative progress in optical quality of photographic lenses over the nearly last 100 years – and I think I have found a good way to understand this progress with my new comparison-charts (Fig. 4 and Fig. 5 see below). What was surprising: the progress over time is independent of the lens-maker and brand. It is generated by a sequence of milestone-like innovations by singular design-legends, innovative calculation progress, creation of new glass-formulations and finally the lens-making-process – espacially allowing for the production of aspherical lens-surfaces! Once the innovation-step is basically made, it is spreading around the globe very quickly (typically within one or two years!).

There are few lenses, which stand out of the general quality-development curve, reaching a higher level of resolution earlier than most others – to be seen here mostly in Fig. 5:

ATTENTION: These measurements are made with USED lenses today, some of which are more than 60 years old! There are influences from ageing and wear (even abuse …) which have become part of the lens-properties when we measure them after long time. However, I only make measurements with samples of lenses, if the optics are clear and undamaged and the mechanics do not show excessive wear or abuse.

Vier_24+25er
Fig. 2: Starting with big-big negative front-meniscus-lenses (at left Angenieux Retrofocus 24mm f/3.5 and Zeiss Jena Flektogon 25mm f/4) the lens-designers soon learnt to reduce the front-lens diameter (at right: Distagon 25mm f/2.8 for Contarex and Olympus OM 24mm f/2,0), creating better results and generating lens-bodies, which were more acceptable  – source: fotosaurier

2 – Data section for 15 historical 24/25mm-prime lenses, 3 modern 23/25mm prime lenses and 4 modern zooms at 24mm-setting:

Auflösung ETC 23-25mm korr

Out of this Chart I have filtered two separate charts, showing the development of RESOLUTION over the decades.

Fig. 4 shows the center-resolution open aperture (blue) and stopped down to the aperture with the highest resolution (green) in the center:

23-25mm_Resol_Center_korr

23-25mm_Diagram_Center_korr

The second chart is showing the corner-resolution at open aperture (blue) vs. the best resolution-value stopped down (green) in the corners (mean value over all four corners) – where „corner“ means a value of 88% – 92% of the full picture circle of the lens which is 21.5 mm radius:

23-25mm Resol_Corners_korr

23-25mm_Diagramm_Corners_korr
Fig. 5: Corner Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and optimum aperture (green, which means: the aperture at which the weighted mean of all the 46 measurement-places over the 24x36mm-frame is maximum. (The maximum corner resulution-value of the individual lens may be higher.) – source: fotosaurier

You see, that nearly all of the difference in resolution of historical top-notch wideangle-lenses for SLR is in the corners of the picture (and of course also continuously in-between center to corner areas). This is easy to understand, because the difficulties for lens-correction rise dramatically with the FoV, which is here 84 degrees corner to corner diagonally.

Besides the resolution, there are other important properties, which improved dramatically over these six decades of lens-engineering history:

a – Chromatic aberration (CA in pixel): It is very low in all these lenses in the center. It typically ranged between 4 and 8 pixels in the corners for the very first lenses of this type. It stayed around 2-3 over the time before aspherical lens-surfaces could practically erase it. Today with the best modern lenses, the value is close to zero (under 0.5) without camera correction and zero with correction.

Among the early lenses the Zeiss Distagon 25mm f/2.8 (though not really outstanding in resolution compared to the other early lenses) pops out, because it had already values of 2-2.5 pixel in the corners – together with the „unicorn“ Topcor 2,5cm f/3.5.

Please consider, that the CA-value in pixel for the same lens is the higher the smaller the pixel size of the sensor is  – here 1 pixel is 3.77 µm.

b – Linear distortion (%): distortion shows – from the beginning – the biggest differences between the legendary lenses of the different designers and brands. The designer has to do a compromise-job in each lens, balancing out the design between resolution, chromatic aberrations and distortions. 0,5 pixel is a very good CA-value even acceptable for acrchitectural work (though „zero“ would be better, of course), 0,75-1,0 pixel is a good compromise-value and 1.5 pixel just acceptable for alround use.

Looking at the spread-sheet Fig. 3, it is surprising, that Angénieux with the very first retrofocus-lens of this wide angle decided to go for nearly „ZERO“ distortion in his design! He had gone close to zero in the 35mm and 28mm-designs before that, too! Probably he wanted to give a statement of his art, because this was really difficult at that time … At the same time he accepted a somewhat higher CA of 7-8 pixels (corresponding to 0.03-0.04 mm). In my collection of top-notch lenses such a low distortion does not appear again before the modern Zeiss Batis Distagon 25mm f/2.0 – and only the legendary 1971 Minolta MD 24mm f/2.8 (including the VFC-Version) came very close with ca. 0.18-0.29% distortion in my measurements.

c – The close-focusing system: there are further innovations to consider, e.g. the lens-design for close focusing. Here one of the important innovations is the floating-element close focusing system – introduced 1971 by Nikon and Minolta first for wideangle lenses as far as I know. This is one of the early merits of the two 1971/75 24mm-Minolta-lenses.

3 – Conclusions:

3.1 Center-resolution:

Since the early days of geometrical optic lens-design with Petzval, Abbe and Seidel, lenses could be designed absolutely perfect for nearly unlimited image-quality (resolution and CA) „on-axis“, which means: in the center of the picture-field … And the  famous designers did it all the time – as soon as they used 4 or more elements in a photographic lens-system.

The first time, I found a proof for that, was with my resolution-measurements on Bertele’s first Ernostar 100mm f/2.0 from 1923 (a four-element-design WITHOUT COATING!). Compared to the legendary Leitz Apo-Macro-Elmarit 100mm f/2.8 from 1987, this lens achieved 98% of the resolution in the center – but only in the center! See my Ernostar-Bog-Article here. (This was the very first report in my photo-blog …)

So, it is not really surprising, what Fig. 4 is telling us: all top-notch lenses show a very high resolution level in the image center since the invention of the retrofocus wideangle design in the 1950s – and they are all on the about same level – though being historical lenses with up to 65 years of age on their back! The reason for that result is, of couse, that only legendary lenses of all brands are taken into the comparison! Maybe the Takumar-lens happens to be one of the weaker examples …

The Olympus OM 24mm f/3.5 „shift“ drops down somewhat against its neighbours. That is no quality issue: this lens has an image-circle diameter of 57mm for up to 10 mm shift! It came out 1984 long before Canon brought out its famous tilt-shift-lenses … Look at the corner-resolution result of this lens in Fig. 5 – it resolves extremely even over its FoV!

in this graph I marked two horizontal lines: one for the resolution of 2.000 LP/PH (linepairs per picture height), corresponding to the resolution of a 24 MP-sensor, which today is the de-facto-standard for  modern digicams. It normally has 4.000 by 6.000  pixels – and 4.000 pixels in the picture height, corresponding to 2.000 Linepairs. At the same time it is just (+15%) above the 21 MP which I estimate for the resolution of modern analogue (general purpose) film emulsions.

The other (upper) horizontal line marks the 3.184 LP/PH Nyquist-frequency of the Sensor in the Sony A7R4-digicam. This is physically the limiting resolution-value for the camera itself. Today, however, the software-algorithms in the camaras can generate structures in the picture, which are typically 15 – 20% higher in resolution, compared to the Nyquist-frequency. And they do this without creating an artificially looking „oversharpened“ picture! Good job!

This means:

All the legendary historical 24/25mm-retrofocus-lenses for SLR-cameras do out-resolve the modern 24 MP-Digicams in the center – mostly even with open aperture! And many of these lenses even come very close to (or exceed) the Nyquist-Frequency of my 60,2 MP digital camera.

Among the historical lenses two examples peek out a little bit (they peek out much more in the graph for the corner-resolution!):

The legendary 1965 Topcor 2,5cm f/3.5 exceeds the Nyquist-frequency of 3.184 LP/PH – and stopped down to f11 it is in the center the highest resolving of my 24/25mm-lenses until today. Together with the tremendous result of its corner-resolution it is one of the exceptional lenses, which I call my „UNICORNS„. Until today, I have not found any explanation for the astonishing early level of performance of this lens – how could that have been achieved? (15 years before the next-best Olympus-lens!) – and who did it? – and where did this person go afterwards, when Topcons innovative power faded out, to bring in her/his inginuity? (… to Olympus?). (This observation refers to other early Topcor-lenses al well!)

The other unicorn peeking out here is the Olympus OM 24 mm f/2.0 of 1973. In my lens-collection it is exceeded only by the 40 years younger Zeiss Batis 25mm f/2.0. But, to be honest, the difference is not really that dramatical – considering the four decades …

Referring to the zoom-lenses (set at FL 24mm) in this test: I just was curious, where the modern zooms would stand in such a comparison. We learn that the 1kg-Monster-Tokina 24-70mm zoom at 24mm has one of the best results – even at f/2.8 … in the center of the picture.

At the end of the line-up of 21 lenses I put the Fujinon-Zoom 32-64mm f/4 at 32 mm on the Fujifilm GFX100 (33x44mm – 102 MP), which corresponds to FL 26mm on „full-frame 35mm“. This shows, that for an essentially higher resolution in the picture-center, we today have to go to a larger sensor-format.

3.2 Corner-resolution:

Fig. 5 contains the important informations of this comparison-test. It shows, that step by step all the improvements in innovative design, glass-formulations and aspherical surface-generation were needed to bring finally the corner-resolution of the picture up on par with the center resolution at 24mm focal length, which is possible today – but only with the use of aspherical lens-elements!

In the graph for the corner-resolution I have added a third horizontal line, which marks the resolution at 50 Lines/mm – corresponding to 600 LP/PH. This is needed to judge the corner-resolution of the early historical lenses.

In the 1960s a wideangle-lens was rated „very good“, when it achieved a resolution of 40 Lines/mm (Modern Photography and others). I have written an article about this already here (in German).  Open aperture most super-wideangle-lense started open aperture in the range of 26 to 32 L/mm in the 1950s and 60s. Stopped down practically all the tested historical lenses surpassed the 40 L/mm-limit.

From 1958 on (ENNA) the stop-down corner-resolution rises continualy (with the exception of the two „unicorns“, already identified in Fig.4) until end of the 1970s,  it arrives close to the 2.000 LP/PH-level, which means: from now on the top-notch-lenses out-perform standard analogue fine-grain film (1977 Nikkor and 1984 Olympus). This last step was then achieved by the use of extraordinary dispersion glass-types.

The two „unicorns“ in this test arrive much earlier at this level: the Topcor 2,5cm f/3.5 out-performs analogue film already in 1959 and the 1973 Olympus OM 24mm f/2.0 exceeds this and comes close to todays modern aspherical lenses.

The modern aspherical prime-lenses are represented in my test by two very different samples:

There is the 23mm f/4 Fujinon, which originally is a GFX-lens – but in this test it is measured in the 24x36mm-Mode also with 60.2 MP on the GFX100, achieving the state of the art for 24x36mm lenses (Batis and Sigma-i) as a middle-format lens!

Just as I made my measurements for this test, the SIGMA i-Series 24mm f/3.5 arrived as a representative of a new thinking: no „impressive“ technical data   – but (hopefully) impressive preformance instead. The result shows: it achieves reference status on a 60.2 MP-sensor with corner-resolution at 85-95% of center-resolution, plus zero-distortion, zero-CA and very close focussing!

Also great news: modern zooms like the Sigma G 12-24mm f/4 – measured at 24mm – arrive now at this level of prime-lenses also in the corners!

As I had no samples of the early historical aspherical lenses in this test, we can not see, in which steps the aspherical lens surfaces moved the wideangle-performance in the picture-corners to the present level.

Maybe this gap can be filled out in some future times.

NOTE 1 – All resolution-values, which are published in this article, refer to MTF30 – what means: the point on the MTF-curve (see Fig. 7), which hits the 30% contrast value.

NOTE 2 – in Part II of this Article I will share some more informations about each individual lens (including pictures, MTF-curves and  lens-schemes).

Appendix: Method of measurement and definition of results

I use the set-up and software by IMATEST with the original IMATEST-Target. I use the large SFRplus-Setup-Image with a physical hight of 783mm bar-to-bar vertically. The distance from target to lens-flange is 0,97 meters. In this area 46 targets are analysed and I share MFT30-weighted-mean-resolution-values (all-over, center and corner), edge-sharpness, linear distortion and maximum lateral CA-values.

Resolution-values are given in Line-Pairs per Picture Height (LP/PH) – where the picture-height is always 24mm. Edge-sharpness is given in pixels (width 3,77 µm).

#TestChart_Angén90f2,5_f2,5
Fig. 6: IMATEST test-target 783mm-bar-to-bar distance. Resolution is NOT measured in the small concentric targets, but at the outside-edges of the black boxes, which are tilted b ca. 5 degrees – source: fotosaurier.

For the measurement I used a SONY A7Rm4 with 60,2 MP-resolution which has a pixel-width of 3,77 µm. The theoretical resolution-limit of the sensor is 3.184 LP/PH (Nyquist Frequency).

The camera setting is used basic as delivered from factory at ISO100 and exposure-compensation of -0.7 stops, using out-of-camera JPEGs. All measurements are made with the identical camera-body (which is important for a precise comparison: I have used one other (earlier) body of this model in comparison, which gave resolution-values between 50 and 200 LP/PH lower than my own camera-body). The repeatability with this method I estimate at 2-2.5%, using ALWAYS manual focusing on the lens with maximum focusing enlargement (11.9-fold) in the camera-viewing-system. Measurement is repeated with re-focusing until a stable maximum resolution at open-aperture of the lens is found and then pictures of the resolution-target are taken with the focussing made wide open for all full down-stops of each lens.

Edge profile (edge-sharpness) is the width of the rise from 10% to 90% intensity at a dark-bright edge in the test target – measured in pixel (width 3,77 with the camera used) – Example shown here for the latest 24mm-prime-lens SIGMA i-Series 24mm f/3,5 – at open aperture f/3,5:

Edge+MFT_Sigma24f3,5
Fig. 7: Edge-profile (top) and MTF-curve (bottom) from the IMATEST software – here the perfect graphs for the brand new Sigma 24mm f/3.5 – at open aperture. I will publish these Curves for all the lenses in PART II of this article – source: fotosaurier

Cromatic Aberration (lateral in the picture-plane) is also measured in pixel separate for red against green and blue against green over the full picture field – in the spread-sheet I note the maximum value, which is in most cases for blue and for most historical lenses in the corners of the picture – sometimes however in the intermediate area.

For more details of testing read my special blog-Article here.

Copyright: Herbert Börger

Berlin, March/April 2021

Ice-Age in Berlin – Berliner Eiszeit

Berlin, Ferbruary 21, 2021

During February 2021 we received a new lesson about the difference between „Weather“ and „Climate“. During rising average-temperatures, accompanied by very mild winters normally, we experienced something, which in fact deserved the name of „WINTER“ with snow, accompanied by temperatures outside your front-door, which you used to know from your deep-freezer!

Water is a fascinating element, which again and again creates wonderworlds for photographers: and I am going to show here some of these wonders, using my „Gartenmikroskop“ („Garden-Microscope“), as I have done with liquid water last summer – see my blog-article „Nach dem Regen“.

For this winter I had hoped, that there would be the occasion to photograph the crystallized form of water in nature (hoarfrost – German: Raureif) – but there were no appropriate conditions here for hoarfrost this year.

Instead we got an impressive occasion to observe amorphous ice.

Here is a teaser-photo:

Picture 1: I called this „The Frozen Torso“ – it is created by water from dewing snow, coming down from our roof. The sun has two important functions here: first dewing the snow and then creating the illumination for this picture…


NOTE: In my photography I only use natural ambient light. My pictures are out-of-camera with just minimal (necessary) adjustments of brightness, gradation-curve, color-dynamic and saturation to show the „real“ scene, which I have seen. My camera for this expedition is the GFX100 with the 120mm-Macro-lens.


In these days before 12.02.2021 (a nice panlindrome date!) we had -15 °C even at noon time with bright sunshine. the days before there had come down 25 cm of snow.

During a short noon-period with the sun perpendicular to the roof, melt-water was generated and was pouring out of the rainwater gutter – down the heavy steel-chain – refreezing directly on the ice-cold steel structure.

Picture 2: Melt-water running down the steel-chain fom the rainwater-gutter at -15 °C, creating a phantastic sculpture on the chain.

Eisaufstieg3_DSCF2020

Picture 3: Detail – process of „building“ the ice-sculpture.

In the following picture you see the the steel-chain, carrying the ice-sculpture, before it was completely enclosed

Eisige-Nordwand3A_BlogHk_DSCF2026

Picture 4: The golden colour of the steel-chain is real – in summer it is sprinkled with ground-water, which contains high amounts of iron and generates this nice „plating“ at the lower end of the chain. Reflexes and deflections of this chain-surface generate the „Whisky-on-the-rocks“ colour situation on some of the following pictures (and there I may have increased dynamic and saturation, to pronounce this …)

Close to the rainwater-chain there are standing a forsythia and a rose-bush.

The splashing around „undercooled“ melt-water is creating sculptures of their own in these:

ForsythiaEis_Blog_DSCF2004Eisknospe_Blog_DSCF2011

Picture 5A and 5B: The forsythia-buds, which is dreaming in the ice here, are about to break open within three days from today (14 days after I took this picture), due to a dramatic temperature-rise of 30 K following the deep cold.

Hagebutten_Blog_DSCF2034

Picture 6: Rosehips „on the rocks“. The blue is from cold, clean-white snow in shadow-areas under clear-blue skies!

If I were a notorious photoshopper, I would have composed myself as a 30 mm tall climber on a rope into the icy „north-side“ of the sculpture …

Eismenagerie1F_Blog_DSCF2013

Picture 7: Freshly sculptured ice at the north-side during the freezing-process.

Picture 8: … and here the promised „Whisky-on-the rocks“, deflecting the golden colour of the rainwater-chain – colour saturation set „high“.

Eiswirbel4_Blog_DSCF2022Eiswirbel5F_Blog_DSCF2009

Picture 9A+B: Spacy formations, which are created in the first freezing period – surface still wet.

Eisdynamik11F_Blog_DSCF2024

Picture 10: Extremely dynamic ice-formations – drops still falling down from the rain-gutter…

Eisglut1F_Blog_DSCF2013Eisglut2_Blog_DSCF2013Eisglut3_Blog_DSCF2013

Pictures 11 A-C: Clear and deep ice against the sun.

Some sections in the ice looked like deep-sky objects straight against the sun:

InSpace11F_Blog_DSCF2010

Picture 12: „Deep-sky object“

The sculpture boosted my phantasy in many different views.

Eiswirbel3D_Blog_SCF2022

Picture 13: „Asteroid“

After another deep-freezing night and dry weather, the surface of the ice re-crystallized in the surface, which generated a completely different appearance: a matte skin with an opaque, shining body of the ice-sculpture.

Eisriese1_Blog_DSCF2113SpaceShip1F_Blog_DSCF2117

Picture 14 A+B: „Frozen Goliath“ – with a huge Nose and a moustache …

During the freezing-process the water-drops, which hit the growing ice-sculpture, did freeze so fast, that icicles grew in horizontal direction, where the splashing drops had a horizontal component of the dynamic momentum:

Eisdynamik1_Blog_DSCF2024

Picture 15: Generation of an oblique icicle due to horizontal momentum of drops and very low temperature, which forces to freeze the water extremely quick.

This leads to such extraordinary details – seen at the next day:

Eiszapfen2D_Blog_SCF2110Eiszapfen11_Blog_DSCF2101Eiszapfen111_Blog_DSCF2101

Pictures 16 A-C: 3D-Icicles

And under certain (natural) lighting conditions, the ice-sculpure can get the look of Metal …

Not-Metal1_Blog_DSCF2108FrozenInsect-F_Blog_DSCF2125

Pictures 17 A-C: „Frozen Metal Insects“ – this is Ice – Not Metal! I assure you again, that I use no digital filters and no HDR for these pictures – just natural ambient lighting and the fine-adjustment of gradation-curve, colour-dynamic and -saturation.

I hope, you enjoyed my trip through the ice-sculpture, which was created by a fancy mood of nature – and is gone by now since several days!

Copyright – Herbert Börger, fotosaurier – Berlin, 21.02.2021

Long Telephoto-Lenses and Temperature

Would you expect, that the optical performance of your photographic lenses can be seriously influenced by the operating temperature? Have you ever realized lack of sharpness in extreme environmental temperature conditions?

The simple answer is, of course, that within the specifications for use, given by the makers, there should be no such concern. But it is not that simple.

For amateur astronomers with their mostly very long telescope-focal-length optics (mirror or lens) this fact is very common:

before using the instrument in the clear and mostly cold winter-nights, you have to put the telescope early enough outside (shielded against due) to bring it into a thermal equilibrium with the ambient air at the time you start your observations. The reason: during essential temperature-changes of the optical components (mirrors, lenses) and their mounting devices, their surface-shapes and adjustment change and destroy the extremly precise optical alignment – until the thermal equilibrium is restored. The refractor-lenses may be mounted to allow for some thermal differences, but large mirrors have to be mounted and adjusted extremely precise, so that the cooling-down of the mount, that holds the mirror, may even generate mechanical tension on the mirror – and that generates optical distortions! So we should remind: the absolute temperatures are not the problem – but the thermal transition stages from warm to cold or opposite way!

This fact is also an important design aspect for telescopes: the preferred structure is „as open as possible“ to allow the air to circulate and to generate a good heat-exchange with the internal telescope structure to speed up this process. While the air gets colder during the night, the instrument’s optics can follow close enough to keep the temperature difference low.

There is an impressive document in the archives of the Mt. Wilson Observatory (near L.A., USA) describing the „first-light“-moment of the new 2,5 meter mirror telescope (Hooker-Telescope) on November 1, 1917 – use this link to the adventurous story! („First light“ is the moment, when somebody looks through the finished instrument for the first time.) Here the first-light moment at Mt. Wilson is described near the end of the long text in this link and shows, what a three hour cool-down time made to the optical properties of the 2.5 meter mirror, (which was made by George Willis Ritchey – and allowed for the detection of the expansion of the Universe by Edwin Hubble shortly after taking this telescope into service.).

Picture 1: 2,5 m (100 inch) Hooker-telescope on Mt. Wilson: just struts hold the mirrors to ease the circulation of air for for a fast achievement of  temperature equilibrium – source: Ken Spencer, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Many instruments in astronomy are closed assemblies, using a corrector-plate (Schmidt-system) or meniscus-lens (Maksutov-System) in the entry of the tube and the mirror at the rear-end (catadioptric telescope – see also my specific blog-article here.) The big disadvantage of these closed systems is the „inertia“ in cooling down due to the closed volume in the telescope tube. Therefore often slits around correctors and mirrors are placed, which allow for sufficient circulation of air through the tube – and even active ventilation is used to shorten the period to reach equilibrium. In some big modern telescopes, the mirror may even be actively temperature-controlled.

Picture 2: „Closed“-tube optical system Maksutov-Cassegrain-Teleskop – source: Wikipedia – Author: Halfblue – http://creativecommons.org/licenses/by-sa/3.0/.

Long telephoto-lenses for normal photography can not be open systems, because the lens-barrels definitely have to be tightly sealed to avoid the invasion of dust, humidity or corrosive gases.

This means, that you have to plan and prepare carefully to bring your equipment to ambient temperatueres in time to avoid these thermal problems. For photographic equipment this would equally refer to the situation, when you come from climate-controlled environment (e.g. hotels) into wery hot (and humid) areas. There is an additional problem, that in bringing cold equipment into hot-humid environment, there might be condensation of humidity on the lenses/mirrors.

This problem is even more delicate with catadioptric lenses (mirror/lens-systems often called just „mirror-lenses“ – in German „Spiegel-Objektive“). In these the surface-shape of the mirrors and the adjustment from mirror to mirror is extremely sensitive for the optical performance of the lens-systems.

I have to-date not realized this with focal lengths of up to 350 mm (though it might be also there to a certain dergree) – but this is definitely an important aspect for focal lengths between 500 mm and 1,000 mm or longer.

From which focal length on these problems may occur, will mainly depend of the type of optical system  – and of course the resolution of your cameras sensor!

Here I want to show you this effect with an example of a catadioptric lens of 800 mm focal length: the Vivitar Series 1 Solid Catadioptric 800mm f/11, used on the Sony A7Rm4 (60,3 MP, 35mm format – 3.77 µm pixel-pitch).

DSCF1516_SolidCat_an_NEX

Picture 3: Vivitar Series 1 Solid Catadioptric 800mm f/11 – source: fotosaurier

It was the first day this year with just sligtly above zero outside temperature (+2 degree Celsius) and very clear air. At ca. 1:15 p.m.I set out the 800mm f/11 lens on the tripod on the balcony and tried to focus on my favorite landscape test target: a roof-top at about 40 m distance.

The advantage of this target is, that it has large AND fine details, low contrast AND high contrast areas and – most important – a sufficient depth, so that I can detect focusing errors very well!

DSC06513_A7R4_VS1-800f11_rooftop_nach3h_blog

Picture 4: Overview picture – complete field of view of the „roof-top“ landscape target in ca. 40 m distance taken with Sony A7Rm4 and Vivitar Series 1 Solid Cat 800mm f/11 – this is the „sharp“ picture after the cool-down period of the lens – source: fotosaurier

It was nearly impossible to meet the positive focus position – so I did the best guess and made the photo – and here is the 100%-crop around the focus-position, which is the first steel spring at the right side of the roof edge:

DSC06506_A7R4_VS1-800f11_rooftop-start_crop67%

Picture 5: The 67% detail of the focus-area (clamp and spiral-spring!) made 15 minutes after setting the lens outside. Best guess of focus, however, you will find no sharper point in front or behind – the distance scale on the lens says 50 meters in this non-equilibrium temperature situation – source: fotosaurier

At this point of time the lens internally is still on room temperature of about 21 degrees … starting to cool down for about 15 minutes, which it took me to set everything up and focus carefully – but desperately, becaus no really sharp focus was seen in high viewing-magnification.

I had focused using the maximum viewfinder enlagement in the Sony camera and was sure: this is not a really sharp picture. But I could not find a better focus. Picture 5 is a 67% crop of the image taken. And as the subject has some depth: no – there is no better focus to be seen on this picture in front or behind the plane of the spring.

I left the lens with camera in this position for three hours and refocused the lens: now I experienced a quite snappy focus – and you can see the same crop-area here:

DSC06513_A7R4_VS1-800f11_rooftop_nach3h_crop67%

Picture 6: The 67% detail of the focus-area (refocused!) after additional 3 hours of the lens outside – source: fotosaurier

The gain in sharpness is damatical – and it exists over the whole field of view, not only in the plane of focus! Also out-of-focus areas show higher contrast now.

However, it connot be ignored, that this catadioptric lens in this picture does by far not use the potential 3,168 Line-Pairs per Picture Height Nyquist frequency of the cameras sensor. My estimate is, that we have here an MTF30 of about 1,100-1,200 LP/PH. So either the three hours of cool-down time were not yet sufficient – or the lens may be not better than this.

(The 1,200 LP/PH MTF30-resolution would correspond to 100 Lines/mm in older „analog“ data. Very good CATs in the 1970s had center-resolutions (measured on film) between 50 and 60 Lines/mm. This relation makes sense, as the difference (factor 0.6 lower for film!) may be owed to the effect of grain and the thickness of the emulsion.)

The „Solid Cat“ 800mm f/11 is a massiv piece of optics – the lens barrel is nearly completely filled with glass, as you see in the lens-scheme:

VS1_SolidCat_800f11_pat_grau

Picture 7Lens-scheme of the Vivitar Series1 Solid Cat  – source: Perkin Elmer Patent application

It is an absolutly unusual mass of glass – so I would not exclude, that the cooling time should even be longer to reach the thermal equilibrium. My plan is, to make a sequence of photos taken in shorter intervals and over a longer time – as soon as the outside temperatures go down again.

I am not so happy with the fact, that I had to use landscape-scene-shots to demonstrate the performance of the lens, however, for 800mm focal length my IMATEST testing-arena is too short. Maybe I will make a parallel IMATEST-trial then with a 500mm CAT.

So, please, consider this as a first teaser for the topic which has shown clearly, that photographic lens performance may seriously suffer during the time, a lens is undergoing strong temperature-change and before equilibrium is reached.

I promise to come back with a more elaborate research-plan soon.

Herbert Börger

Berlin, December 4th, 2020

Aphorism of the day: Scientific research is most successfull, when it brings up more new questions than it has answered. (fotosaurier)

Copyright: fotosaurier

Nach dem Regen – unterwegs mit dem „Gartenmikroskop“

Der Schauplatz dieses Essays ist der Ziergarten, den meine Frau seit 2017 in Berlins Südosten  angelegt hat.

In den meisten Sommern bisher (3 von 4) herrschte große Trockenheit – wenn nicht gar Dürre! Ein Grundwasser-Brunnen und ein fein verästeltes Betropfungs- und Besprinkelungs-System verhinderten das Schlimmste. Wir haben seither immer  eine Flasche Schampus kalt stehen, die wir öffenen, wenn es so viel geregnet hat, dass der Boden vollständig nass wird. Da das lange Zeit fast nie geschah, haben wir manche Flasche dann eben aus Verzweiflung geleert … ehe sie verdunstet wäre!

Zumindest hat Regen bei uns den Charakter eines besonderen Ereignisses – und Außerirdischen von einem Regenplaneten wird sicher ganz besonders unser dämlich-seliger Gesichtsausdruck auffallen, den wir haben, wenn wir draußen stehen und uns die dicken Regentropfen ins Gesicht klatschen lassen. Das passierte nun endlich in diesem Jahr etwas häufiger.

Nach dem Regen verändert sich die Welt im Garten dramatisch: die Farben werden leuchtender und satter, weil einerseits Blütenstaub von den Pflanzen abgewaschen wurde und andererseits die Luft nun viel klarer ist. Außerdem wird das auf die Oberflächen der Pflanzen fallende Licht nicht nur diffus gestreut, sondern es sitzen Millionen kleiner Linsen auf den Blättern und Blüten, die Das Licht bündeln, beugen und brechen.

Kommt nun die Sonne heraus (möglicherweise erst nach Stunden) hat die Szene ihren großen Auftritt: Myriaden von Tropfen leuchten und glitzern … es ist ein optischer Rausch!

Aber wie soll man das fotografisch „erfassen“? Das „Ereignis“ selbst ist im mikroskopischen Bereich angesiedelt. Wie soll man da in einer Übersicht einer Garten-Szene einfangen, was der Mensch als Betrachter ja eigentlich erst in seinem Gehirn aus dem physikalischen Ereignis und der physiologischen Reizkette als „Impression“ komponiert?

An dieser Aufgabe arbeite ich noch. Ein erstes Ergebnis sehen Sie hier:

DSCF0304-1grTw_blog

Bild 1: Sonnenaufgang nach nächtlichem Schauer. Quelle: fotosaurier

DSCF0305_blog

Bild 1a: Hier in einer Variante … Quelle: fotosaurier

Meine Sofortlösung lag in dem alten, bewährten Prinzip „pars pro toto“ – deutsch: der Teil spricht für das Ganze!

Ich lasse mich auf Augenhöhe an die pflanzlichen „Gartenbewohnern“ heran und studiere ihren äußeren und inneren Kosmos, in der Hoffnung, dass in der Summe der Bilder sich das GANZE im Betrachter zusammensetzt.

NDR015_4k_DSCF6635

Bild 2: Frauenmantel – der Pedant unter den Bodendeckern: versuche mal, ihm eine Lücke in den Perlenschnüren nachzuweisen … – Quelle: fotosaurier

NDR8_4k_DSCF6290

Bild 3: Polyantha-Rosenblüten – viele meiner Aufnahmen entstehen sehr früh am Morgen bei sehr flachem Streiflicht – Quelle: fotosaurier

NDR80_4k_DSCF6805

Bild 4: Rittersporn (Wildform) – diese Schönheit ist nur ca. 12 mm lang – Quelle: fotosaurier

NDR5_4k_DSCF6275

Bild 5: Lilie – diese Blüte hat ca. 100 mm Durchmesser – Quelle: fotosaurier

NDR0415_4k_DSCF6814

Bild 6: Blatt des Phlox (rosa) hat die vermutlich niedrigste Oberflächenspannung in unserem Gartenreich – Quelle: fotosaurier

Wie und wo, sich Tropfen in welcher Gestalt auf Blättern, Stengeln und Blüten finden, hängt von physikalischen Größen ab (ja: und auch ein bisschen physikalische Chemie ist dabei…): Oberflächenspannung, Luftfeuchtigkeit, Temperatur, Geometrie bestimmen die Form und Größe des Wassertropfens und den Aufenthaltsort und schließlich bestimmen die physikalisch-optischen Brechungsgesetze des Lichts die Erscheinung.

NDR0201_4k3_DSCF6335

Bild 7:  Jeder einzelne Tropfen projiziert ein Bild der Pflanze selbst und der umliegenden Gartenlandschaft! Hier an der Hartriegel-Scheinblüte – Quelle: fotosaurier

NDR801_4k_DSCF6805

Bild 8: Am Wild-Rittersporn – die Kleinsten haben den größten Auftritt –  Quelle: fotosaurier

NDR0413_4k_DSCF6814

Bild 9:  Bild des Gartens bis zum Horizont … in einem Wassertropfen am rosa Phlox – Quelle: fotosaurier

Bild 10:  Wasser-Kugellinsen projizieren Brennpunkte des Sonnenlichtes auf das Blatt am Frauenmantel – Quelle: fotosaurier

NDR551_4k_DSCF6923

Bild 11: Das Blatt des Spier-Strauches trägt „Brillianten“ – Der Wassertropfen als Lupe vergrößert die Blatt-Härchen, auf denen der Tropfen schwebt – Quelle: fotosaurier

Die Vielfalt der Kompositionen, die sich daraus ergeben, ist – in Verbindung mit Jahreszeit, Tageszeit, Wetter und den Möglichkeiten des Fotografen oder der Fotografin – unendlich groß: Wenn Du in Deinem gesamten Leben an jedem Tag nur in Dein begrenztes Gärtlein gehst und fortografierst, wirst Du nie zweimal dasselbe Bild machen! (… ja eine Variante des berüchtigten Flusses  … !)

Wenn man sich dies alles lange genug betrachtet, kommt man unweigerlich zu dem Schluss: das passiert nicht nur alles passiv mit den Pflanzen – was da passiert, folgt auch einem Plan der Pflanze, die also eine Absicht verfolgt!

  • Die Blätter sollen die Wassertropfen in Richtung auf den eigenen Wurzelkreis ableiten;
  • Die Atmungs-Schlitze auf der Blattunterseite sollen nicht überflutet werden;
  • Die Blüte will ihren Blütenstaub trocken halten;
  • Es sollen Insekten zum Trinken nahe der Blüte angelockt werden.

Bild 12: Blatt des Agapantus – leitet alles in seinen Wurzelstock – Quelle: fotosaurier

Bild 13: Akelei-Blatt – Sie hält ihr Blatt perfekt trocken – Quelle: fotosaurier

NDR77_4k_DSCF6851

Bild 14: Blumenhartriegel – Trinkhalle für Insekten – Quelle: fotosaurier

Eine der offensichtlichsten physikalischen Einflussparameter ist die Oberflächenspannung, denn sie bestimmt sehr viele einzelne Eigenschaften der Tropfen:

  • Der Winkel, der sich zwischen der Blattoberfläche und der Tropfenoberfläche bildet,  bestimmt, wie der Tropfen uns als lichtbrechende „Linse“ erscheint: als perfekte Wasserkugel oder als flacher oberflächlich glänzender See.
  • Die Haltedauer der Tropfen an der Pflanze: bleibt der Tropfen fest sitzen bis er verdampft ist oder läuft das Wasser bei der leisesten Erschütterung ab?

In den nächsten beiden Bildern sehen wir eine Blüte, die ihre Strategie von der Phase der Knospe (hier viele fingerförmige Knospen als Rispe angeordnet!) zur Blüte drastisch ändert – es ist die Zuchtform der Montbretie:

Bild 15: Knospen-Rispe der Montbretie – zieht sich das Wasser an, wie einen Handschuh!  – Quelle: fotosaurier

NDR001_4k_DSCF0157

Bild 16: Blütenrispe der Montbretie – hält ihr Pulver (=Blütenstaub …) trocken! – Quelle: fotosaurier

Die Knospen-Rispe zieht sich die Regennässe vollflächig über, wie einen Handschuh (sehr niedrige Oberflächenspannung). Die Blüte entfaltet sich mit hoher Oberflächenspannung zum Regenwasser und hält so die Tropfen auf sicheren Abstand zum duftenden Sekret in ihren Blütentrichtern.

Zu solchen Zwecken sind die Pflanzen Meister der Komposition von Oberflächentexturen und chemischen Molekülstrukturen, die die Wechselwirkung mit dem Medium H2O präzise nach ihren Bedürfnissen regeln.

Alle naturwissenschaftlichen Betrachtungen beiseite lassend, tauchen wir aber schließlich in einen schier endlosen Mikrokosmos der Formen, Farben und Lichtbeugungen ein – der schließlich in fast abstrakten Kompositionen hoher Suggestivkraft enden kann:

NDR0471_DSCF6795_blog

Bild 17: Rosenblüte nach einem Schauer – Quelle: fotosaurier

NDR0311_4k_DSCF6878

Bild 18: Rosenblüte nach leichtem Schauer – Quelle: fotosaurier

NDR621_4k_DSCF5954

Bild 19: Tulpenblüte nach einem kräftigen Schauer  – die Blüte hat sich unter dem Gewicht der Tropfen zur Seite geneigt – Quelle: fotosaurier

DSCF1024_Funkienblatt_blog

Bild 20: Funkien-Blatt, vom Dauerregen „geflutet“ – Quelle: fotosaurier

Wassertropfen in der Natur können außer vom Regen auch von anderen Wetterphänomenen gebildet werden:

  • Tau
  • Nebelkondensation (nicht dasselbe wie Tau – sieht völlig anders aus!)
  • Rauhreif und schmelzendem Rauhreif

Das ist jeweils ein eigener Mikrokosmos – der jeder für sich neue Bilder schafft.

FreiOtto21_DSCF0159_blog

Bild 21: Hier zur Erinnerung ein Bild mit Tropfen aus Nebelkondensation aus meiner Altweibersommer-Serie – Quelle: fotosaurier – Links: Altweibersommer2016, Altweibersommer2017, Altweibersommer2020

(Anmerkung Ende 2023: seit 2020 hat es in unserem Garten keinen „Altweibersommer“ gegeben)

Aber auch Regen ist nicht gleich Regen! Die Bilder, die ich bisher gezeigt habe, stammen meist vom frühen Morgen oder Vormittag – nach einem nächtlichen Schauer. Das war hauptsächlich bedingt durch das hiesige Wettergeschehen im Berlin-Brandenburger Raum.

Nach zwei Tagen ununterbrochenem Landregen (den hatten wir 30./31.10.2020) sieht der Tropfen-Kosmos völlig anders aus:

NDRR9991_DSCF1012_crop

Bild 22: Rosenblätter nach Dauer-Landregen – Quelle: fotosaurier

Während nach kurzer Regendauer am Rosenblatt meist das Wasser völlig abperlt, und dann (kleinere) Tropfen am Blattrand nach unten anhängen, sitzen hier viele dicke Tropfen AUF dem Blatt. Den netten „Beifang“ (kleine Schnecke am Blattstiel, kaum größer als die Wassertropfen) nimmt man natürlich gerne mit: die habe ich erst auf dem Bild am PC entdeckt. So geht es auch oft mit Insekten, die sich unbemerkt und bereitwillig genau in der Schärfezone meiner Bilder aufhalten!

NDRR9992_DSCF0943_crop

Bild 23: Rosenstängel nach Dauer-Landregen – Quelle: fotosaurier

Auch beim Stengel der Rose ein ähnliches Bild: während nach Regenschauern die Tropfen ausschließlich unten am Zweig hängen, sitzen sie hier fast ausschließlich oben auf dem Stengel. Bei dieser Rosensorte ist sogar das Blatt jetzt schon völlig durchnässt – das Wasser perlt gar nicht mehr ab.

NDRR9993_DSCF1000_crop_blog

Bild 24: Rosenknospen nach Dauer-Landregen – Quelle: fotosaurier

NDRR9994_DSCF1000_crop_blog

Bild 25: Ausschnitt von Bild 18: wenn man ganz genau hinsieht, haben die Netze der Baldachin-Spinne die 2 Tage Dauerregen überlebt!- Quelle: fotosaurier

NDRR9995_DSCF0986_crop_blog

Bild 26: „Regentropfenspieße“ bis zum Abwinken … mehr geht fast nicht in die Seggen-Blüte hinein – Quelle: fotosaurier

Wie ist meine Arbeitsweise bei dieser Art der Fotografie?

Alle Aufnahmen entstehen frei Hand – ohne Stativ. Das IBIS der Kamera hat einen wesentlichen Anteil am Erfolg – aber auch die benutzte Iso-Einstellung von 800, bei der ich die Dynamik des Sensors vollständig ausnutzen kann!

Nur relativ wenige meiner Regentropfenbilder entstehen im gezeigten Ausschnitt – sehr viele Bilder sind Ausschnitt-Vergrößerungen, teilweise bis dicht an die 100%-Darstellung. Sehr viele der gezeigten Kompositionen sind erst beim Durchmustern der 100 MP-Bilder entstanden. Die Nutzung der Fujifilm 100 MP-Kamera (GFX100) hat einen entscheidenden Anteil an der Entstehung dieser Bilder. Und der Zufall hat dadurch eine wichtige Rolle in meiner Regie bekommen! Ich will nicht verhehlen, dass das Durchforschen der mikroskopischen Welten in den 100 MP-Bildern ein Vergnügen ganz eigener Art ist.

Ich verwende dazu das Fujinon GF 120mm-Makroobjektiv  – und die Fähigkeit der Kombination von Digitalsensor und Objektiv, den Raum im Schärfebereich auch bei 100%-Vergrößerung noch sehr plastisch darzustellen, hat einen großen Anteil an dem Vergnügen! Die Kombination dieser Kamera und des Objektives nenne ich „mein Gartenmikroskop„.

Zum Schluss ein Tipp: es müssen nicht immer Myriaden von Wassertropfen sein, die ein beeindruckendes Bild erschaffen. Manchmal gilt auch: „Weniger ist mehr!“:

Dahlie1_DSCF0147_blog

Bild 27: Ein einzelner Tropfen an einer Dahlienblüte! – Wow! – Quelle: Fotosaurier

Und noch ein Tipp:

Für Werbefotos wird im Studio selbstverständlich die Methode angewendet, die Pflanzen, Früchte (und Menschen?) mit der Sprühflasche anzusprühen. Ich kann Hobby-Fotografen nur davon abraten: man sieht den Unterschied zu natürlichem Regen, Tau etc. (ich verrate nicht, woran man es sieht! Sie kommen sicher selbst darauf …).

Ich mache das nicht … ebenso wie ich nie mit einem Blitz arbeite – nur mit natürlichem Tageslicht!

Aphorismus des Tages: Der Fotograf kann das Wetter nicht ändern – aber er kann etwas draus machen (fotosaurier)

Copyright fotosaurier, Herbert Börger, 10. November 2020

 

 

 

Katadioptrische Foto-Objektive – Teil III

Teil III: Katadioptrische Foto-Objektive von 1946 – heute.

(Teil I finden Sie hierTeil II hier.)

Die Erkenntnisse aus Teil II führen zu dem Schluß, dass für die ab den 1950er Jahren aufkommenden katadioptrischen Foto-Objektive aus den vielfältigen, bereits für Astro-Anwendungen bekannten „katadioptrischen Dialyten“ (Brachymediale) abgeleitet wurden, von denen einige schon bis zu 150 Jahre bekannt waren und unter denen Maksutov eine spezielle Variante ist.

Eine kurze Geschichte der Katadioptrischen Foto-Objektive:

Mit dem starken Aufkommen der Spiegel-Linsen-Objektive in den 1960-70er Jahren bildeten sich spezielle Konstruktionsmerkmale heraus, die in dieser Form bei astronomischen Fernrohren meist nicht zu finden sind:

a) Außer der Tatsache, dass die Foto-Optiken sehr robust und hermetisch dicht gebaut sind, wurde zunehmend auf die Bohrung im Primärspiegel verzichtet! Das bedeutet, dass die Strahlen, die vom Sekundär-Spiegel zurück geworfen werden, nicht mehr durch eine Öffnung im Hauptspiegel zur Kamera bzw. Filmebene gelangen, sondern durch einen unverspiegelten zentralen Bereich der Spiegelfläche durch das Glas des Spiegelkörpers treten.

Das bedeutet, dass der Innenbereich der Optik zwischen den beiden Spiegeln noch besser hermetisch abgeschlossen ist. Es bedeutet gleichzeitig, dass der zentrale Bereich des Spiegelkörpers auch noch als brechendes Linsenelement im Strahlengang einbezogen ist. Dieser Bereich bildet dann oft zusammen mit 1-3 weiteren Linsen den Sub-Apertur-Korrektor im Strahlengang nach dem Sekundärspiegel. Er muss aus Linsen-Glas allerhöchster Güte bestehen, da dieser Bereich des Hauptspiegels – im Falle eines Mangin-Spiegels – dreimal von jedem Lichtstrahl durchlaufen wird!

b) Immer häufiger treten nach 1965 Mangin-Spiegel auf, was ja der Grundkonfiguration des Hamilton-Teleskopes entspricht. Zuerst finden sich Primärspiegel als Mangin-Typ, bald auch beim Sekundärspiegel bzw. in beiden Positionen gleichzeitig oder auch nur beim Sekundärspiegel. Wie wir oben gesehen haben (Hamilton-Teleskop) ist der Mangin-Spiegel bereits ein Grund-Element des kadadioptrischen Dialyts – für sich genommen ist er meines Wissens nie als Teleskop oder Astrokamera verwendet worden.

Bild 1: Mangin-Spiegel – Quelle: Wikipedia – Autor: not known – https://creativecommons.org/licenses/by-sa/3.0/

Neben der Wirkung als Element der optischen Rechnung liefert der Mangin-Spiegel zwei weitere Vorteile für das Foto-Objektiv:

  • Die an der polierten Glasfläche anliegende reflektierende Spiegeloberfläche ist in der Mikro-Oberflächenstruktur wesentlich glatter als eine aufgedampfte Aluminium-Schicht auf ihrer „offenen“ Seite, die auch noch mit einer transparenten Schutzschicht (meistens Si02) überzogen werden muss.
  • Die Verspiegelungs-Schicht ist gegen den Zutritt von korrosiven Gasen, Feuchtigkeit etc. perfekt geschützt und behält langfristig seine uneingeschränkte Wirkung. Dies alleine wäre schon ein ausreicheder Grund, um diese Bauweise zu bevorzugen!

c) Foto-Objektive katadioptrischer Bauart benötigen zur Abschirmung gegen Falschlicht rohrförmige Blenden um den Zentralen Strahlen-Durchlass im Zentrum des Primärspiegels (nach vorne in Richtung des Sekundärspiegels) bzw. um den Sekundärspiegel herum (in Richtung Hauptspiegel), um die Kamera vor einfallendem Falschlicht zu wchützen. Auf dem folgenden Linsenschnitt sind die Tubus-Blenden und das Problem des Falschlichtes gut zu erkennen:

OM500_f:8

Bild 2: Linsenschnitt mit Abschirmtubus-Blenden gegen „Falschlicht“am Olympus Zuiko Reflex 500mm f/8 (in diesem Bild ist der Lichteintritt rechts!) – Quelle: Olympus Produktbeschreibungs- und Spezifikationsdatenblatt zum Objektiv

An diesem Bild kann man gut erkennen, dass ohne diese beiden Blenden Lichtstrahlen durch die ringförmige Apertur-Öffnung (rechts) direkt und ohne Reflexion an den Spiegeln auf das Zentrum des Hauptspielgels und damit auch in die Kamera gelangen könnten! Eine Gegenlichtblende vor dem Objektiv kann das nur dann sicher verhindern, wenn die Gegenlichtblende extrem lang wäre – was natürlich dem Objektiv-Konzept widerspricht …

Die Existenz dieser rohrförmigen Blenden im zentralen Bereich hat Auswirkungen auf die sog. Obstruktion – also die Abschattung der Lichtstrahlen im Zentrum der Apertur:

Bei Strahlenbündeln, die vom Bildfeldrand schräg in die Optik einfallen, werfen die Tubusblenden einen Schatten auf den Hauptspiegel. In der Folge ist nicht mehr die gesamte Ringförmige Spiegelfläche „aktiv“. Sie ist in der Breite des Blendentubus unterbrochen. Man kann das bei geeigneter Bildstruktur an den außerfokalen Apertur-Ringbildern von Lichtreflexen sehen, wie folgend in dem absichtlich unscharf gestellten Aufnahme des Hausdaches gut zu erkennen ist:

DSC06249_A7r4_OM500f8_Ringe_blog

Bild 3:Tubusblenden-Schatten“ bei den außerfokalen Unschärferingen im Randbereich mit dem Olympus OM Zuiko Reflex 500mm f/8: unten-links und -rechts sieht man die kleinen „Packman-Ringe“ – die Öffnung weist zum Bildzentrum hin. – Quelle: fotosaurier

d) Die große Korrektor-Linse in der Lichteintritts-Apertur dient immer auch gleichzeitig als Tragstruktur für den Sekundärspiegel. Wie im Teil I ausführlich beschrieben wurde, führt die „Obstruktion“ durch den Sekundärspiegel im Strahlengang zu einer Kontrastverringerung des Beugungsbildes 1. Ordnung. Aber wenigstens werden durch das Fehlen von Tragspinnen die dadurch verursachten Beugungs-Spikes in den Bildern einer Punktlichtquelle vermieden, wie sie beim normalen Newton und Cassegrain auftreten.

Meine persönlichen MEILENSTEINE katadioptrischer Foto-Objektive (CATs):

Vorbemerkung: die Einordnung bestimmter Objektive als „Meilenstein“, die ich hier vornehme, ist rein SUBJEKTIV und basiert auf meinem – begrenzten – Wissen bzw. meiner Erfahrung. Mir ist bewusst, dass andere Fotografen und Beobachter zu etwas anderen Schlüssen kommen können, die ihrer eigenen Erfahrung entsprechen.

An dieser Stelle möchte ich noch einmal ins Gedächtnis rufen, dass in den 1950er bis 70er Jahren gegenüber „langen“ Teleobjektiven (>200mm Brennweite) nicht nur Kompaktheit (Baulänge) und geringes Gewicht für die „CATs“ sprach, sondern vor allem die Freiheit von Farbfehlern (Chromatische Aberration, „CA“) – im Verhältnis zum Preis! Es gab zwar in den 1970ern bereits die ersten farbreinen Telekanonen mit Fluorid-Linsen – aber zu einem extrem hohen Preis unter Verwendung eines sehr empfindlichen Materials. Den Preis konnten/wollten sich sicher wenige Amateurfotografen leisten. So bin ich überzeugt, dass die „Blüte“ der katadioptrischen Teleobjektive hauptsächlich vom Amateur-Segment getragen war.

Darüber, warum die katadioptrische Objektivbauform fast völlig wieder verschwunden ist,  werde ich am Ende dieses Artikels einige (begründete) Vermutungen anstellen.

Hier nun mein kurzer Überblick auf die Zeitskala und die Entstehungsgeschichte geschlossener katadioptrischer Systeme, die als Foto-Objektive geeignet waren oder spezifisch dafür gebaut wurden.

Ich führe hier auch die mir bekannte Grundlagenentwicklungen ebenfalls im Zeitstrahl mit auf, damit die zeitliche Dimension mit einem Blick sichtbar wird.

Ich führe dann Foto-Objektive auf, die aus meiner Sicht Meilensteine der Entwicklung solcher Optiken darstellen. Dies ist keine vollständige Beschreibung dieses Objektiv-Segmentes! Ich versuche derzeit Informationen über alle jemals gelieferten Photo-CATs zu sammeln und hoffe in einigen Monaten eine fast vollständige Liste veröffentlichen zu können.

Fast alle bekannten katadioptrischen Teleobjektive wurden für das Kleinbildformat gerechnet. Einige wenige zeichneten Mittelformat 6×6 oder 6×7 aus: Carl Zeiss Jena Spiegelobjektive 500mm und 1.000mm, Kilfitt 500mm und 1.000mm und Pentax 6×7 1.000mm f8 – soweit mir bekannt ist.

1814

Grundlagen-Erfindung (Astronomie) des Katadioptrischen Dialyts (auch „Brachymedial“ genannt) durch Hamilton und darauf folgend eine  große Reihe von Varianten und Weiterentwicklungen.

Hier der Link zu Hamiltons GB-Patent Nr. 3781.

Bis in jüngerer Zeit hat eine italienische Firma tatsächlich noch Hamilton-Teleskope/-Kameras für astronomische Zwecke geliefert (Ceravolo).

1930

Grundlagen-Erfindung (Astronomie) der Schmidt-Korrektor-Platte – daraus entstanden Schmidt-Kamera und Schmidt-Cassegrain-Teleskop

1940/41

Grundlagen-Erfindung (Astronomie) des Maksutov-Korrektor-Meniskuslinse – daraus entstanden das Maksutov-Cassegrain-Teleskop – genau betrachtet ist es aber eine Sonderform des katadioptrischen Dialyts.

ab 1945

Maksutov-Cassegrain 3,5″ f/12-Teleskope – Lieferung großer Stückzahl des Teleskops an sowjetische Schulen, gebaut (anfangs) vermutlich in Nowosibirsk. Wenn Sie wissen wollen, wie das Schul-Teleskop aussah, folgen sie bitte diesem Link zu einer sehr kompakten Biografie Maksutovs auf Prabook. Dort sehen Sie ein Bild von D. Maksutov mit „seinem“ Schul-Teleskop vor ihm auf dem Schreibtisch. Mit ähnlicher Spezifikation wurde es in Polen als „PZO“ hergestellt und in der DDR von Zeiss als „Telementor„. Diese Geräte wurden auch (da sie Devisen brachten!) in den Westen verkauft.

Bemerkenswert ist, dass die Motivation, ein extrem robustes und haltbares sowie wartungsarmes Fernrohr für Schulen zu schaffen, bei Dimitri Maksutov zu der ursprünglichen Idee für das Meniskus-Tesleskop-Design führte. Ich sehe darin ein Beispiel, dass auch das Streben nach Gemeinwohl zu hervorragenden Innovationen führen kann!

In diesem Link zu „cloudynights.com“ fand ich weitere interessante Fotos des polnischen PZO-Instruments.

ab 1954

QUESTAR Maksutov-Cassegrain-Teleskop 3,5″ (in Großserie gefertigt bis heute)

Klassisches Maksutov-Cassegrain, Brennweite 1280mm f/14.4 (Spezifikation ab 1961) – wurde und wird auch als Teleskop-Tubus („Field-Model“ oder „Birder“) mit Okular- oder Kameraanschluss geliefert.

Ein Kult-Klassiker der Amateur-Astronomie. Aber auch die NASA soll einige beschafft haben …

Bild 4: Questar-3,5″-Teleskop mit ausgezogener Taukappe – Quelle Wikipedia, Autor:Hmaag – https://creativecommons.org/licenses/by-sa/3.0

ab 1936 bis in die 1960er Jahre

wurden mindestens in Deutschland (Zeiss), Japan (Nikon) und Russland (GOI) und USA (Kodak) große semi-transportable (meist katadioptrische) Spiegelobjektive für militärische und satellitengestützte Anwendungen entwickelt. Diese waren ausschließlich vom Maksutov-Typ und hatten Brennweiten von 1.800mm – 8.200mm. Viele Informationen dazu gibt es im Übersichtsartikel von Marco Cavina in diesem Link. Auf diese umfangreichen Erfahrungen konnten sich die Optik-Unternehmen dann nach dem 2. Weltkrieg bei der Entwicklung von katadioptrischen Wechselobjektiven für Spiegelreflex-Kameras stützen.

vor 1958

Erste Maksutov-Cassegrain-Teleobjektive für SLR von LZSO, Sowjetunion: MTO 1.000mm f/10.5  und MTO 500mm f8 – erhielten eine Goldmedallie auf der EXPO in Brüssel 1958.

Ich weiß nicht, wann genau diese Maksutov-Cassegrain auf den Foto-Markt gebracht wurden. Es muss noch unter der strengen Überwachung von Dimitri Maksutov selbst gewesen sein, der ja bis 1964 lebte. Gibt es Leser, die da weiter helfen können?

IMG_0939_MTO500f8

Bild 5a: MTO-500mm f/8 – Quelle: fotosaurier

IMG_0943_MTO1000f10

Bild 5b: MTO-1.000mm f/10 – Quelle: fotosaurier

Das archaische Design und die solide Bauweise führten dazu, dass die Optiken (bis heute) von Fotoamateuren liebevoll als „Russentonnen“ bezeichnet werden. Herstellerbezeichnungen waren und sind MTO, Arsenal, Rubinar. Nicht immer waren die Optiken leider in der Qualität konstant, was oft an verspannt eingebauten Spiegeln gelegen haben soll. Ein Bericht dazu (Dr. Wolfgang Strickling) finden Sie hier.

1959/1961Nikon bringt nach den russischen MTOs bereits 1959 sein erstes CAT mit ehrgeizigen Daten auf den Markt, das Reflex-Nikkor 1.000mm f/6.3 – und bereits 1961 folgt ein Reflex-Nikkor 500mm f/5. Ab den frühen 1970er bis in die 2000er Jahre bietet dann Nikon kontinuierlich das „Reflex-Nikkor-Trio“ 500 f/8 + 1.000 f/11 . 2.000 f/11 an. Viele Details findet man in dem Artikel von Marco Cavina – für die Liebhaber der italienischen Sprache! Die 2.000mm f11 wurden demnach alle von 1971 bis 1975 in zwei Versionen gefertigt. Das eklärt wohl zur Genüge, warum Ihnen das 2.000er CAT so selten in „freier Wildbahn“ begegnet.

Refl-NikkorC_IMG_0912

Bild 6: Reflex-Nikkor C 500mm f/8 – Quelle: fotosaurier

1961Carl Zeiss Jena

stellt das katadioptrische „Spiegelobjektiv“ 500mm f4,0 auf der Leipziger Messe vor (Entwickelt ab 1955 von Dr. Harry Zöllner, W. Dannenberg. (Kurze Zeit später kommt auch ein Spiegelobjektiv 1.000mm f5,6, die sog. „Stasi-Kanone“, hinzu). Die Optiken sind für Mittelformat 6 x 6 gerechnet und geliefert worden!

Frei zugängliche Darstellungen von Linsenschnitt, Auflösung und MTF-Kurven stehen mir bisher zu diesen Optiken nicht zur Verfügung. Allerdings gibt es einen fabelhaften synoptischen Artikel von Marco Cavina, in dem das Jena-Spiegelobjektiv 500mm f/4.0 und das Mirotar f/4.5 im Detail ausführlich beschrieben und verglichen werden.

Bereits 1941 hatten bei Zeiss die Konstrukteure Robert Richter und Hermann Slevogt ein CAT-System (Richter-Slevogt-Teleskop) entwickelt und angemeldet, das dem kurz vorher in GB angemeldeten „Houghton-Teleskop“ (s. Teil II) ähnelt. Wahrscheinlich wussten beide Gruppen damals im Krieg nichts voneinander.

Auf diese Entwicklungen von 1941 geht offensichtlich dieses Carl Zeiss Jena-Spiegelobjektiv zurück.

Cavina äußert in seinem Artikel die Vermutung, dass die optische Leistung des Jena-Objektivs nicht an das folgend beschriebene, kurz danach heraus gekommene Objektiv von Zeiss Oberkochen heran kommt, da es vermutlich als IR-Fernobjektiv für Aufnahmen auf IR-Schwarzweißfilm entwickelt wurde.

In dem Blog „Zeissmania“ (Teil II) finden sich einige Aufnahmen,die der Autor selbst mit dem Zeiss Jena 1.000 f/5.6 gemacht hat (Website der Burgenländischen Amateurastronomen BAA).

1963Zeiss Oberkochen (West)

stellt das MIROTAR 500mm f/4,5 vor und fertigt 200 Exemplare für Contarex.  Zeiss-Konstrukteure sind Helmut Knutti und Alfred Opitz. Später wird noch einmal ein kleines Los speziell mit dem Kyocera-Contax-Anschluss (c/y) gefertigt. Etliche nagelneue Contarex-Objektive wurden (lt. Marco Cavina) auch im Werk auf  c/y umgerüstet. Ab 1975 liefert Zeiss ein MIROTAR 1.000mm f5,6 und fertigt 20 Exemplare. (Alle Mirotare sind für Kleinbild-Format gerechnet.)

Mirotar 500mm f4,5_strahl

Bild 7: Linsenschnitt des Zeiss Mirotar 500mm f4.5 – Maksutov-Design mit zwei Korrektur-Menisken aber noch kein Mangin-Spiegel – Quelle: Datenblatt Fa. Zeiss

Spezifikations-Datenblätter von Zeiss mit Linsenschnitten finden Sie hier und hier.

Dies ist ein Vertreter der „Maksutov-Fraktion“, noch mit durchbohrtem Primärspiegel.

Zeiss verwendet hier noch keinen Mangin-Spiegel! Für das benötigte große Bildfeld des Kleinbild-Formates und dem großen Öffnungsverhältnis von f/5.6 ist ein einfacher Maksutov-Meniskus allerdings nicht ausreichend als Korrektor bei höchsten Ansprüchen. Daher verwendet Zeiss davor noch einen zweiten (umgekehrten) und sehr dicken Meniskus – eine Lösung, die auch Maksutov selbst für die großen astronomischen MAK-Kameras in Chile und im Südkaukasus bereits verwendet hatte.

Das Mirotar 500mm f4.5 gilt als Referenz-CAT im Kleinbild-Bereich. Im Artikel von Marco Cavina ist die MTF-Kurve – im Vergleich mit anderen APO-Objektiven und dem 500mm f/8 von Zeiss – dargestellt: sie ist allen anderen Optiken weit überlegen.

vor 1964Canon

stellte für die Olympiade in Tokyo drei CATs der Superlative zur Verfügung, die wohl weniger in den Amateurfotografen-Sektor passten, aber umso bemerkenswerter sind:

  • Canon TV-800 f3.8
  • Canon TV-2.000mm f11
  • Canon TV- 5.200mm f14

Sie haben richtig gelesen – kein Druckfehler! Ich habe keine Ahnung, in welchen“Stückzahlen“ Canon diese Optiken gefertigt hat. Sie wurden also offensichtlich mit Vidicon für das Fernsehen eingesetzt. Hier findet man in einem weiteren Artikel von Marco Cavina (auf Italienisch) mehr Informationen darüber.

1965 – Der US-Photodistributor „Spiratone

beginnt ein Maksutov-Cassegrain-Objektiv 500mm f/8 – gefertigt bei LZOS in der Sowjetunion – im Westen zu liefern. Es bekommt in Fotozeitschriften sehr gute Testergebnisse. Später (jedenfalls VOR 1983) kommt ein katadioptrisches Spiegelobjektiv 300mm f5.6 hinzu.

1965 bis 1980 – dies ist die Periode,

in der JEDER Kamera- oder Objektiv-Hersteller ein oder mehrere Foto-CATs heraus brachte.

Binnen kürzester Zeit war es Standard, dass jeder Original-Hersteller (Nikon, Canon, Pentax, Minolta, Yashica) mindestens zwei CATs in seinem Programm anbot: alle hatten ein 500mm f/8 CAT zu bieten, sowie am langen Ende entweder 800mm f/8 (Minolta) oder 1.000mm f/10 oder f/11. Es kamen auch einige 1.200mm- und  2.000mm-Optiken auf den Markt. Wie schon gesagt, arbeite ich an einer möglichst vollständigen Übersicht. Pentax  brachte zusätzlich zu seiner Kleinbild-Linie ein Reflex Takumar 1.000mm f/8 für Mittelformat (die Pentax 67) heraus. Das gab es meines Wissens sonst nur bei Zeiss Jena und Kilfitt.

Eine Ausnahme bildete Olympus, wo man zögerte um erst 1982 ein einziges aber sehr kompaktes Zuiko Reflex 500mm f/8 heraus zu bringen (s.u.).

Die Leica CATs „MR-Telyt-R“ waren Minolta-Objektive in einem Leica-Design.

Die „echten“ Fremdobjektiv-Hersteller („3rd-party-lenses“) reagierten ebenfalls sehr schnell: anscheinend allen voran SIGMA, die sehr früh (Datum?) ein super-lichtstarkes 500mm f/4.0 heraus brachten. Ich fand einen Bericht eines amerikanischen Fotofreundes, der diese Optik in einem völlig  verwahhrlosten Zustand  fand und mit seinen eigenen Bordmitteln „aufarbeitete“ (Respekt!). Schließlich stellte er fest, dass es nicht so schlecht gewesen sein kann.

Sigma hat dann über die Jahrzehnte den größten „Zoo“ von katadioptrischen Brennweiten auf den Markt gebracht. Dabei auch die eher ungewöhnlichen Brennweiten 400mm und 600 mm. Ich hatte einmal ein 600er Sigma-CAT, das mich aber nicht voll überzeugen konnte.

Dabei waren natürlich auch Tokina und Tamron mit eigenen katadioptrischen Designs – wobei man feststellen muss, dass die 1979/81 erschienenen Tamron 500mm f/8 und 350mm f/5.6 an die Spitzengruppe der (späteren!) Objektive von Olympus und Zeiss heran kamen. Das Tamron 500 f/8 CAT war sogar noch etwas kürzer und leichter als das 1982 erschienene Olympus 500 f/8. Bild und Linsenschnitt hier auf der Adaptall-2-Website. Beim 350er Tamron ist die aufschraubbare Gegenlichtblende (unbedingt benutzen!) praktisch genau so lang, wie das Objektiv selbst.

Makinon war ein weiterer echter japanischer Fremdobjektiv-Hersteller mit meist recht guten Produkten.

In Europa/Deutschland gab es nun ab 1972 keinen ernst zu nehmenden SLR-Hersteller mehr. Es gab allerdings noch berühmte Fremdobjektiv-Hersteller, allen voran Kilfitt/Zoomar. Legendär ist das Kilfitt-Zoomar Sports-Reflectar 500mm f/5.6 (Ende der 1960er), detailliert beschrieben hier auf der Pentaconsix-Website – und hier das 1970 vorgestellte Kilfitt/Zoomar Sports-Reflectar 1.000mm f/8 beide gerechnet für Mittelformat und mit dem Kilfitt WE-Adaptersystem auch an vielen Kameras verwendbar.

Eine unübersehbare Menge von Handelsmarken boten eine große Zahl von CAT-Varianten sehr billig an. Meines Wissens war 1965 zeitlich der früheste Spiratone, USA (siehe oben) – bei dem man auch wusste, wer der Hersteller war (MTO bzw. LZSO in Russland). Bei den anderen habe ich keine Ahnung, wer der Hersteller gewesen sein kann. Mir ist – ausser dem besagten Spiratone – keines bekann, das durch eine besonders hohe optische Qualität aufgefallen wäre.

1975 VivitarSeries1 Solid CAT 800mm f11 und 600mm f8

DSCF1516_SolidCat_an_NEX

Bild 8: Vivitar Series 1 Solid Cat 800mm f/11 an der Sony A7RIV (ohne Gegenlichtblende)- Quelle: fotosaurier

Anfang der 1970er Jahre las ich über ein neu veröffentlichtes Patent von Perkin Elmer über eine sogenannte „Solid Catadioptric Lens“ – d.h. ein Spiegellinsen-Objektiv, das quasi „aus einem einzigen Glaszylinder“ bestehen sollte (gelesen möglicherweise bei Herbert Keplers „Kepler on the SLR“ in Modern Photography?):

Linsenschnitt_SolidCat_Pat3,547,525

Bild 9: Skizze aus der Patent-Anmeldung Perkin Elmer „Solid-Cat“ von 1967, erteilt 1970. Quelle: US-Patentanmeldung US3547525A

Diese Optik sollte extrem kurz bauen – ich war begeistert. Einige Jahre später erfuhr ich schließlich in der „Modern Photography“, dass dieses Objektiv als Vivitar Series 1 Optik 800mm f/11 tatsächlich am Markt erschienen sei.

VS1_SolidCat_800f11_pat_grau

Bild 10: Linsenschnitt VivitarSeries1 Solid-Cat 800mm f/11. Er liegt erstaunlich nahe am ursprünglichen Entwurf! – Quelle: Patent Perkin Elmer Patent Patent application

Da war sofort klar, dass ich das irgendwann haben müßte – was dann noch einige Jahre gedauert hat… Über die Geschichte der Vivitar Series 1-Optiken wird irgendwann separat zu berichten sein. Für uns waren diese Objektive damals in den 1970er Jahren eine Offenbarung – und die meisten davon besitze ich noch bis heute!

Die beiden Solid-Cats (600mm und 800mm) bauen extrem kurz – sind aber deutlich schwerer als die sonst gängigen CATs am Markt.

Erst Jahrzehnte später stieß ich dann auf die spezielle Geschichte dieses Objektivs, das mich so fasziniert hat. in den Archiven der „SPIE“ findet sie sich in Form eines Interviews mit dem Konstrukteur dieses Objektivs, Juan L. Rayces (1918 – 2009). Darin enthalten auch ein Foto des Konstrukteurs mit seinem Objektiv auf dem Stativ – am belebten Strand! (Heute wohl nicht mehr denkbar…)

Auch Perkin Elmer lieferte Exemplare diese Objektivs unter der eigenen Marke (und auch Spezialausführungen an die NASA).

BildCat01

Bild 11: Solid Cat-Ausführung 800mm f/11 unter Perkin-Elmer-Eigenmarke – Quelle: fotosaurier

Was unter der Marke „Vivitar Series 1“ wirklich geschah: die Fertigung lief 1975 an – wurde aber nach 3 Monaten wieder gestoppt, weil Vivitar feststellte, dass es für ein Amateur-Objektiv zu teuer war. Daher gibt es wohl tatsächlich nur eine relativ geringe Stückzahl von Objektiven weltweit (obwohl es damals heftig – auch in Deutschland – beworben wurde).

1978Minolta RF Rokkor 250mm f5.6

Linsenschnitt_Minolta_RF250

Bild 12: Linsenschnitt Minolta RF Rokkor-X 250mm f/5.6 – Quelle: Datenblatt Minolta

In Beschreibungen werden die Mangin-Spiegel oft als „Innovativer Schritt“ an sich hervorgehoben – was ja, wenn man von katadioptrischen Dialyt (von 1814!) ausgeht, nicht richtig ist. Auch ist die Bezeichnung eines „Rumak“, die ich schon gelesen habe, nicht wirklich zutreffend: Rumak würde einen Maksutov-Typen bezeichnen, der – nach Rutten als Rutten-Maksutov benannt – nicht den verspiegelten Fleck auf der Rückseite des Meniskus als Sekundärspiegel nutzt, sondern einen auf ein Podest auf dem Meniskus montierten Cassegrain-Sekundärspiegel. Aber diese Optik ist überhaupt kein Maksutov-Typ.

Diese Optik hat einfach ein hervorragendes Brachymedial-Design – insbesondere unter Berücksichtigung der kurzen Brennweite und extrem kurzen Baulänge von 58mm (ohne Gegenlichtblende).

Wie bei allen CATs ist die Benutzung der Gegenlichtblende dringend empfohlen!

DSCF1475_MMD250f5,6_blog

Bild 13: Minolta RFx Rokkor 250mm f/5.6 (ohne Gegenlichtblende) – Quelle: fotosaurier

DSCF1491_Vergl_RF-Rokkor_OM50f1,2

Bild 14: Größenvergleich RF Rokkor zu lichtstarkem Normalobjektiv (Olympus OM 50mm f/1.2 – das ist aber das kompakteste unter den f/1.2-Normalobjektiven. Mein heutiges Sony GM-50mm f/1.4 hat das ungefähr 3- bis 4-fache Volumen des RF Rockor …) – Quelle: fotosaurier

Das RF-Rokkor 250mm f/5.6 eröffnete damit Ende der 1970er Jahre noch einmal ein neues Brennweiten-Segment für katadioptrische Objektive mit einem wirklich großen Wurf in jeder Hinsicht – optisch wie geometrisch! Vielleicht lag es auch in der Luft? – umgehend tummelten sich in diesem Segment die Fremdobjektiv-Hersteller („Third-Party“) aber interessanterweise folgte keiner der großen Kamerahersteller Minolta in dieses Segment (meines Wissens …). Ich halte den Brennweitenbereich (250-350) für sehr sinnvoll, da  der „Durchschnitts-Fotoamateur“ mit dem Mmanuell-Fokussieren von 500er-Objektiven schon mal leicht überfordert ist – siehe meine Bemerkungen am Ende des Artikels.

Die Brennweite 250mm hat sich dabei nur einer der Fremdobjektivhersteller mal „zugetraut“. Vertrieben wurde das Produkt wohl nur über Handelsmarken – in Deutschland als „Berolina 250mm f/5.6“ bekannt, anderswo auch unter „Focal“ etc. Mir ist nicht bekannt, wer da der Konstrukteur bzw. Hersteller war. Die optische Qualität ist eher bescheiden und die Optik ist auch wesentlich größer als das RF Rokkor (fast so lang wie das Olympus Reflex 500mm f/8).

Die anderen Optiken lagen alle im Bereich von 300mm (f/4.5 bis f/6.3) oder 350mm f/5.6 (Tamron – sehr gute Optik!) – dabei war sogar ein russischer Maksutov-Typ (Rubinar) und auch Astro-Hersteller wie Celestron haben das probiert. Auch die Handelsmarke Spiratone war hier wieder dabei (viel gelobt!).

1978/79Celestron (Schmidt-Cass.) 750 f/6.3 und Questar (MAK) 700mm f/8

Dies sind Versuche, aus dem Astro-Geräte-Segment heraus reine Foto-Teleobjektive anzubieten (was ja mit dem russischen MTO früher schon mal sehr gut gelungen war – bis heute!).

Celestron  (1978) war das einzige reinrassige Schmidt-Cassegrain-Objektiv, das an den Foto-Markt gebracht wurde. Es verschwand ab 1986 wieder.

Das Questar-Gerät (1979) war als „lichtstarker Maksutov-Typ“ auch nicht lange am Markt.

IMG_0934_Qestar700

Bild 15: CAT-Teleobjektiv „Celestron 700“ 700mm f/8 – Quelle: fotosaurier

Qualitativ hochwertig und hervorragend gebaut – aber der Foto-Markt funktioniert eben anders als die „Astro-Nische“.

1982 – Olympus OM Zuiko Reflex 500mm f/8

DSCF1487_OMreflex500f8_blog

Bild 16: Das kompakte Olympus Zuiko Reflex 500mm f/8 an der „zierlichen“ OM4Ti (Gegenlichtblende eingeschoben) – Quelle: fotosaurier

Ich hebe dieses 500er CAT besonders hervor, weil es praktisch keine Fehler hat – außer dem Fehlen des Stativanschlusses, der allerdings dem Olympus-Konzept widersprochen hätte! Sein auffälligster Vorteil ist der hervorragende Bildkontrast, der das (sehr feinfühlige!) Fokussieren leicht macht – selbst ohne Fokusvergrößerung an der digitalen Systemkamera. Das Bild „springt“ geradezu in die Schärfezone. In mittleren Entfernungen ist die Bildstruktur („Rendering“) – auch des Hintergrundes! – sehr schön. Auch die ausziehbare Gegenlichtblende ist sehr praxisgerecht.

DSC06236_OM500_Astern_blog

Bild 17: Beispiel des schönen Renderings beim Olympus OM Reflex Zuiko 500 f/8 – Quelle: fotosaurier

OM500_f:8

Bild 18: Linsenschnitt Olympus OM Reflex Zuiko 500mm f/8 (Lichteintritt von rechts! – Gegenlichtblende eingeschoben) – Quelle: Datenblatt Olympus

Zusammen mit dem Minolta AF Reflex 500 und dem fast 20 Jahre später erschienenen Mirotar 500mm f/8 ist es das beste 500er-CAT das ich persönlich und praktisch kenne. Beide Spiegel sind Mangin-Spiegel. Das Auffälligste ist, dass hier ALLE optischen Elemente in nur zwei Gruppen um die beiden Spiegel zusammengafasst sind! Es ist das CAT mit der geringsten Zahl von Glas-Luft-Flächen. Ich vermute, dass dies ein Teil des Geheimnisses des hervorragenden Bildkontrastes ist.

Bei meinen jüngsten Messungen mit einer Nyquist-Frequenz des Sensors von 3.168 LP/BH messe ich beim Zuiko-Reflex ca. 1.500 LP/BH (entsprechend 125 Linien/mm) in der Bildmitte – in der äußersten Ecke bei ca. 860 LP/BH. Ich gebe die Auflösungswerte für 30% Kontrast an (wie meistens üblich …) Für die damalige analoge Fotografie waren das Werte, die noch über der praktischen Filmauflösung lagen (zumal mit ISO 400-Filmen – oder noch höheren ISO-Werten!).

Deutlich kompakter als diese Optik ist meines Wissens nur das Tokina 500mm f/8 – aber das spielt in der optischen Qualität eine Liga darunter. Auch das Tamron 500mm f/8 ist etwas kürzer – man muss aber eine Gegenlichtblende aufschrauben, die fast so lang ist wie das Objektiv selbst!

1982/83Vivitar Series 1 450mm f4.5

Hier ist die Datierung ganz sicher:  Oktober 1982 wurde das Objektiv auf der Photokina in Köln vorgestellt. Ab 1983 wurde es meines Wissens ein Jahr lang gefertigt. Es gibt dazu auch noch einen 2-fach-Telekonverter, der speziell für die Optik gerechnet ist und direkt am T2-Gewinde angeschlossen wird.

Diese Optik hat nichts mit den früher gelieferten Vivitar Series 1 „Solid Cat“ zu tun!(Das war vereinzelt angenommen worden …)

Dies ist die wohl (bisher) exotischste katadioptrische Foto-Optik, die es tatsächlich an den Markt geschafft hat! – Eindeutig ein Fall für  die Rubrik „My Crazy Lenses“ – demnächst hier in diesem Blog

Das Design stammt von der Optik-Designfirma OPCON Associates, die der ehemalige Perkin-Elmer Mitarbeiter Ellis Betensky 1969 mit zwei anderen Partnern (Melvin Kreitzer und Jacob Moskovich) 1969 gegründet hatte – und die bis heute existiert (seit 1996 ohne Betensky).

DSCF1501_VS1_450f4,5_OM4Ti_ROTblog

Bild 19: Vivitar Series 1 450mm f4.5 (Länge 150mm – ohne die Gegenlichtblende) an der Olympus OM – Quelle: fotosaurier

Nach intensiver Suche habe ich schließlich das Patent für dieses katadioptrische Objektiv gefunden: US-Patent 4523816 angemeldet 1983 für Vivitar. Anders als oft zu lesen, ist als Erfinder Melvin Kreitzer eingetragen und nicht nicht Ellis Betensky. Die Bilder „Fig.3 und Fig.4“ sind durch klicken auf „Full Pages“  (am linken Rand) einzusehen.

VS1_450f4,5_USPat4523816_Fig3

Bild 20: Grobe Linsenschnitt-Skizze aus dem US-Patent 4523816 für das Vivitar Series 1 450mm f/4.5 – entspricht sicher nicht in allen Details dem endgültig hergestellten Objektiv – es fehlt z.B. die nach vorne abschließende dünne Planglasscheibe (s. FIG-4) – Quelle: US-Patent 4523816

Der EXOT besitzt vier höchst innovative Besonderheiten:

a – Der (sehr dicke!) Front-Korrektor L1 besteht laut Spezifikations-Claims aus PMMA-Kunststoff („Acryl-Glas“).

b – Der Korrektor L1 hat auf der Vorderseite eine asphärische Fläche! … also eine Art „verkappte-Schmidt-Platte“?

c – Das System besitzt eine Innenfokussierung durch Verschiebung der Korrektor-Linsengruppe G2. Dabei ändert sich die Brennweite des Objektivs in Naheinstellung.

d – das vordere Kunststoff-Korrektorelement L1 ist an der Objektiv-Vorderseite durch eine dünne planparallele Glas-Scheibe geschützt (fehlt in Fig.3 – angedeutet nur in Fig.4 des Patentes).

Weitere Informationen zu diesem Objektiv im Artikel in der Reihe „My Crazy Lensesdemnächst.

1989Minolta AF Reflex 500mm f/8

DSCF1523_MAF_AFreflex500_blog

Bild 21: Minolta AF Reflex 500 an der Sony A7RIV (mit Gegenlichtblende) – Quelle: fotosaurier

Minolta AF 500f8

Bild 22: Minolta Autofocus 500mm f/8 – Quelle Minolta Objektiv-Spezifikation

Minolta hat damit – 4 Jahre nach der Einführung der AF-SLR als erster weltweit und bis heute einziger Hersteller – etwas gemacht, was eigentlich als „unmöglich“ galt: Funktion eines zuverlässigen Autofokus bei Blende 8!  Ich hatte das Objektiv an der Dynax 7D und ich benutze es bis heute an der Sony A7RIV (mit Adapter LAEA4)  – das funktioniert hervorragend und sehr schnell auch noch bei schwachem Licht! Das Objektiv wurde auch lange Zeit noch mit dem Sony A-Mount ausgeliefert und ist in anscheinend fast beliebiger Menge und günstig am japanischen Gebrauchtmarkt zu erhalten – in Deutschland eher selten und viel teurer als in Japan!). Es ist auch eine meiner „crazy lenses„.

Der Aufbau benutzt zwei Mangin-Spiegel und ähnelt dem Design des Minolta RF 250mm f/5.6. In der Bildqualität spielt es absolut in der Oberliga – wegen der grundsätzlichen  Fokussier-Schwierigkeiten mit den manuell zu fokussierenden CAT-Objektiven ist der Autofokus für sich in der Praxis ein großer qualitativer Nutzen!

Ich halte es – zusammen mit dem RF Rokkor 250mm f/5.6 – für das unter heutigen Bedingungen an D-SLR und Spiegelloser Systemkamera nützlichste historische CAT – auch frei Hand einsetzbar für „normale Alltagsfotografie“. Die Klasse der manuell fokussierbaren 500er CATs ist sonst doch schon etwas für das Staiv!

1997Zeiss Mirotar (für Contax c/y) 500mm f8

Dies ist das letzte relevante 500er CAT (eines Originalherstellers), das auf den Markt kam – und es ist eines der Besten, das Zeiss nun als „Spätgebärende“ herausbrachte. Allerdings kann man den MFT-Kurven bei Marco Cavina entnehmen, dass es nicht an das überragende Referenzobjektiv 500mm f/4.5 heran reicht. (Ich finde: das ist keine Schande – ca. 800 Gramm treten gegen fast 4 kg an …)

Mirotar 500mm f8

Bild 23: Zeiss Mirotar 500mm f/8 von 1997 – Quelle: Zeiss Datenblatt

Dieses Objektiv hat nun alle Merkmale der „modernen“ CAT-Bauweise: Mangin-Spiegel und nicht durchbohrter Hauptspiegel. Es ist allerdings kein Maksutov-Typ mehr sondern eine Hamilton-Bauweise mit ausgeklügelten Sub-Apertur-Korrektoren. Der Mangin-Primärspiegel ist ungewöhnlich dick! Zusätzlich zu einer ausziehbaren Sonnenblende besaß das Objektiv einen sehr schlank gebauten drehbaren Stativanschluss – es war also in jeder Hinsicht  perfekt.

MIOTAR500f8IMG_0902

Bild 24: Zeiss MIROTAR 500mm f/8 – Quelle: fotosaurier

Anfang der 2000er Jahre erschienen plötzlich viele nagelneue Mirotar-500mm f/8-Objektive zum Preis von 500 EUR im Angebot (unter halbem Listenpreis)! Es ging das Gerücht, dass ein ganzer Container mit diesen Objektiven geraubt worden sei – danach wäre das alles Hehlerware gewesen … Vielleicht hatte aber auch Zeiss nur wieder ein größeres Los vorweg gefertigt und versuchte die Ware rechtzeitig vor der Einstellung der Kyocera-Contax-SLR (2005) los zu werden – es fand also ein radikaler Abverkauf statt? Ich weiß nicht, was wirklich der Grund war – aber ich habe es gekauft. (War ich ein Hehler?) Im Vergleich zum Olympus-CAT habe ich damals festgestellt, dass beide Objektive gleichwertig an der Spitze des Wettbewerber-Feldes liegen (seinerzeit mit Vergleich auf Analog-Film festgestellt). Ich habe dann das Zuiko-CAT behalten, da es kompakter und leichter war. Bei einem Vergleich am aktuellen 63 MP-Digital-Sensor könnte sich heute allerdings herausstellen, dass eines der Objektive doch dem anderen überlegen ist, da unsere Vergleiche auf Analog-Film einen praktischen Grenzwert von ca. 100 Linien/mm besaßen – entsprechend 1.200 Linienpaare/Bildhöhe. Wie schon oben angemerkt liegt das Olympus-CAT am digitalen Sensor bei 1.500 LP/BH.

In der Zeit nach dem Jahr 2.000:

Nachdem Sony als letzter Anbieter das AF Reflex 500 (original Ex-Minolta!) eingestellt hat, gibt es meines Wissens kein CAT-Objektiv eines Original-Herstellers mehr am Markt.

Einige Fremdobjektiv-Hersteller (auch neuere wie Samyang) haben sehr preiswerte CAT-Objektive im Programm. Die weitaus meisten CATs, die heute herum geistern, werden unter Handelsmarken vertrieben. Man sollte von denen nicht zu viel erwarten. Darunter sind auch solche, die schon in den 1980/90er Jahren exakt so geliefert wurden – erkennbar z.B. an der identischen Ausführung der auffälligen Gummierung des Fokussier-Rings.

Gerade vor wenigen Wochen hat allerdings einer der renommierten Fremdobjektiv-Hersteller (Tokina) wieder ein neues CAT mit 400mm f/8 und T2-Anschluß neu auf den Markt gebracht.

Ist das der Beginn einer Renaissance?

Man wird sehen …

Warum sind die katadioptrischen Teleobjektive (CAT) nach der ersten großen „Welle“ (1965-1990) fast wieder verschwunden?

Auffallend ist, dass extrem viele der im Netz angebotenen CATs in ganz hervorragendem Zustand – oft neuwertig – sind. Das könnte bedeuten, dass sie kaum benutzt wurden. Das ist auch meine persönliche Meinung. Eine Ausnahme bilden überdurchschnittlich oft die „Russentonnen“.

a) Im professionellen Bereich wurden die frühen CATs wohl hauptsächlich wegen der farbreinen Abbildung eingesetzt. Dieser Vorteil fiel mit dem Erscheinen der Tele-Objektive mit ED-Glas ab ca. 1982 weg. Allerdings wurde dieses „Versprechen“ der Abwesenheit von Farbfehlern tatsächlich nur von den Spitzen-CATs am Markt eingelöst. Möglicherweise blieb noch der Grund eines federleichten, kompakten „Immer-dabei-Lang-Brennweiters“ erhalten, der für den Fall des Falles hinten in der Reportage-Tasche schlummern durfte.

b) Das manuelle Fokussieren mit den CATs geringer Öffnungsverhältnisse (f/5.6 bis f/11 !) war selbst für erfahrene Manuell-Fokussierer sehr schwierig. Die Hilfsmittel wie Schnittbildindikator oder Mikroprismenring fielen ab f/8 aus – es blieb meist nur das Fokussieren auf dem Mattglasbereich übrig! Bei professionellen Kameras gab es teilweise wechselbare Einstellscheiben für den SLR-Sucher. Aber ehrlich: wer legt sich zwischendrin ins Gras und fummelt eine Einstellscheibe raus und wieder rein …?

Es ist auch festzuhalten, dass mit sehr wenigen Ausnahmen gerade an preislich günstigen CATs das präzise Fokussieren – für das man eigentlich eine Mikrometer-Schraube gebraucht hätte! – sehr schlecht und grob gelöst war. Das dauert dann, wenn man immer wieder vorbei gedreht hatte … oder die Schärfeergebnisse waren eben unterirdisch!

c) Alle CATs waren mehr oder weniger Streulichtempfindlich, wenn man gegen die Sonne fotografierte. Wenn man den Effekt eines großflächigen „Flares“ nicht bildnerisch nutzen will, kann ich tatsächlich nur davon abraten.

d) Die Verschlusszeit: Hinzu kam der Punkt, dass man an Analog-Kameras mit typischerweise maximal ISO400-Film für ein 500mm-Objektiv doch eine tausendstel Sekunde für ein scharfes Bild gebraucht hätte – also gerade die kürzeste Verschlußzeit, die typischerweise in den 1960er Jahren zur Verfügung stand! Die Stative, die wir als Amateure damals hatten, waren auch für 500er Teles nicht wirklich geeignet.

Da die Dinger so kurz bauen, unterschätzt man unbewusst die Brennweiten-Wirkung auf das Verwackeln. Darüberhinaus hat das „Handzittern“ mit dem kurzen Griff ein großes Übersetzungverhältnis.

Im Grunde waren die weitaus meisten Amateure, die sich erstmals ein so langbrennweitiges Objektiv zulegten, unerfahren in der Nutzung und manuellen Fokussierung solcher wirklich langbrennweitiger Objektive. Mit Übung und Zähigkeit kann man da viel erreichen – aber das bedeutet nur eines: fotografieren – fotografieren – fotografieren!

e) Nun war da auch noch die Situation des großen Zeitverzuges zwischen Auslösen der Kamera und dem Vorliegen der Ergebnisse mit entwickeltem Film/Dias und Vergrößerungen – mit denen eventuell die Enttäuschung aufkam, dass die Ergebnisse einfach nicht scharf oder doch verwackelt sind. Da landete dann vermutlich ein großer Teil dieser zunächst attraktiv erschienenen Objektive in Schubladen und Vitrinen – bis heute: und warteten auf den Weckruf durch die hoch auflösenden, bis ISO3200 nutzbaren digitalen Systemkameras, die binnen Sekunden ein Feedback/Bildergebnis liefern?

Werden die Karten für die CATs mit den modernen Systemkameras heute neu gemischt?

Ich halte das durchaus für möglich, dass die wahre Zeit für solche Objektiv-Designs nun erst begonnen hat:

Mit der praktisch gut nutzbaren ISO-Empfindlichkeit bis zu 3.200 oder 6.400 und elektronischen Verschlüssen bis 1/40.000 Sekunde gibt es eine dramatisch verbesserte Ausgangslage.

Allerdings muss man sich immer bewusst machen, dass trotz der tollen Fokussierhilfen an digitalen Kameras das manuell Fokussieren dennoch eine echte Herausforderung bleibt – zumal der  jüngere Normalfotograf keine Routine im manuellen Fokussieren besitzen dürfte! Wenn man bei 500mm Brennweite und 11-facher Fokussiervergrößerung versucht zu fokussieren tanzt das Bild im Sucher wie beim Blick durch ein Objektiv mit 5,5 Meter Brennweite – mit etwas Pech verliert man sogar sein Ziel aus dem Auge … Da hilft nur ein Stativ!

Ein Autofokus wäre hier eine durchschlagende Verbesserung der Nutzbarkeit.

Anscheinend testet auch schon ein renommierter Fremdobjektivhersteller (Tokina) gerade den Markt mit einem nagelneuen CAT mit 400mm f/8. Aber auch manuell zu fokussieren …

Aufhorchen lässt dabei auch die jüngste Ankündigung der Firma Canon, nicht mit CATs aber mit neuen DO-Tele-Objektiven von 600mmund 800 mm mit Öffnungsverhältnissen von f/11 neu entwickelt für die Sensoren der spiegellosen Systemkameras mit AF und IS im Objektiv und ebenfalls sehr kurz bauend bzw. zum Transport zusammenschiebbar. („DO“ bedeutet „Diffraktions-Optik“ – das sind dünne, leichte Beugungs-Elemente, die Linsen ersetzen können. Canon testet diese Technik seit Jahrzehnten bei langen, lichtstarken Teleobjektiven.)

Bei der Benutzung von historischen CAT-Objektiven an den modernen Digital-Systemkameras muss man sich klar machen, dass die Optiken nicht für die Benutzung am digitalen Sensor berechnet wurden und nicht jedes CAT mit jedem Sensor harmoniert. Da kann es auch vorkommen, dass eine Optik an einer Sony Probleme zeigt, an einer Fujifilm- oder Olympus-Kamera aber nicht. Typische Probleme sind helle „Halos“ in der Bildmitte, niedrige Auflösung am Bildrand oder generell flauer Kontrast.

Viel Spaß beim Ausprobieren – ich werde sobald es passt über einige CAT-Sensor-Kombinationen in meine Rubrik „My Crazy Lenses“ berichten.

Herbert Börger, Berlin, 8. November 2020

 

 

Katadioptrische Foto-Objektive – Teil II

Teil II: Spiegel-Linsen-Systeme für die „normale“ Fotografie.

Für fotografische Tele-Objektive werden ausschließlich Kombinationen von Spiegeln und Linsen – sogenannte katadioptrische Systeme – eingesetzt.

ENTSTANDEN sind auch diese Optik-Systeme ursprünglich alle im Bereich der astronomischen Optik (s. Teil I).

Diese Spiegel-Linsen-Systeme sind für normale fotografische Aufgaben im terrestrischen oder sogar Nahbereich geeignet – aber natürlich auch für astronomische Anwendungen und auch für visuelle Beobachtung der erzeugten Bilder durch ein Okular – vorausgesetzt, dass die tatsächliche Umsetzung der Gerätekonzepte mit Auflösung und Kontrast auch die hohen Ansprüche für astronomische Geräte erfüllen!

Katadioptrische Systeme werden im normalen Foto-Bereich gegenüber reinen Linsen-Teleobjektiven wegen sehr geringer Baulänge und Gewicht geschätzt.

Der bedeutendste Unterschied der Foto-Optik (zum Einsatz als Wechselobjektiv an Systemkameras) gegenüber der astronomischen Optik ist, dass die Optiken hermetisch dicht abgeschlossen sein müssen. Ein Handhaben offener Spiegelsysteme als Wechselobjektiv im alltäglichen Einsatz wäre aus vielen Gründen undenkbar: Staubablagerung, Spritzwasser, Tau- und Belagsbildung, Beschädigung.

Das Scheitern des kommerziellen Projektes eines Nur-Spiegel-Schiefspieglers in den 1970er Jahren (Katoptaron) des deutschen Optik-Designers H.Makowsky mit einem völlig ofenen Spiegelobjektiv scheint diese Hypothes zu bestätigen. Das optische Konzept des Schiefspieglers (das es in dutzenden individuellen Varianten gibt) ist keinesfalls Schuld daran: es ist sehr erfolgreich und hoch geschätzt bis heute vor allem im Astro-Amateurbereich – aber auch bei wissenschaftlichen Anwendungen!

(Für astronomische Geräte gilt im Allgemeinen genau das Gegenteil bezüglich Offenheit: sie sind am besten so offen wie möglich, damit der Temperaturausgleich in die kälteren Nacht-Beobachtungszeiten hinein möglichst schnell und ohne Temperaturdifferenzen innerhalb des Gerätes vonstatten geht! Bei hermetisch geschlossenen Foto-Objektiven muss man sich der Gefahren durch Temperaturdifferenzen im Gerät für die optische Leistung deshalb immer bewusst sein!)

Rubrik III – das „Katadioptrische Dialyt“

Bevor wir uns den konkreten Fotoobjektiven zuwenden, müssen wir noch einen dritten Ausflug in die astronomische Optik machen. Der wird notwendig, wenn man sich die Linsenschnitte der verschiedenen katadioptrischen Foto-Objektive nur einmal flüchtig ansieht:

dabei fällt einem schnell auf, dass diese Systeme sich im Wesentlichen in zwei Gruppen unterteilen lassen:

Gruppe 1: Maksutov-Cassegrain-Systeme, leicht erkennbar an der nach vorne konkaven Frontlinse;

Linsenschnitt_Rubinar300mm_f4.5

Bild 1: Linsenschnitt Foto-Objektiv auf Basis Maksutov-Cassegrain mit Meniskus-Frontlinse und ohne Mangin-Primärspiegel (Rubinar 300mm f/4,5 – Lichteintritt links). Bei diesem guten Objektiv verläßt man sich wegen des relativ großen Bildwinkels nicht mehr alleine auf den Maksutov-Meniskus! – Quelle: Spezifikationsblatt des Herstellers

Gruppe 2: Ähnlicher Cassegrain-Grundaufbau wie Gruppe 1, aber die große Frontlinse, die das System nach vorne abschließt, ist kein Meniskus.

Mirotar 500mm f8

Bild 2: Linsenschnitt Foto-Objektiv der „Gruppe 2“ (Zeiss Mirotar 500mm f/8 von 1997), Lichteintritt links) – Quelle: Zeiss-Spezifikations-Blatt Mirotar 500mm f8

Die eventuell erwartete Gruppe auf Basis des Schmidt-Cassegrain-Prinzips existiert nicht – ich habe jedenfalls dafür nur ein Foto-Objektiv-Beispiel gefunden: das Celestron 750mm f/6.3. Ein elementares SC-System ohne zusätzlichen Sub-Apertur-Korrektor von 1978. Auch Celestron ist danach wohl bald wieder bei seinen „Leisten“ geblieben – den astronomischen Teleskopen – bis heute.

Schon die beiden frühen ersten „Zeiss-Boliden“ 500mm f/4.0 (Ost) bzw. f/4.5 (West) und 1.000mm f/5.6 – Ost und West – sind Stellvertreter der beiden Gruppen 1 und 2:

Das mit Vorstellung 1961 frühere Carl-Zeiss-Jena-„Spiegelobjektiv“ (Ost) ist ein Vertreter der Gruppe 2 mit zwei Linsen in der vollen Apertur, die nicht Menisken sind; man könnte es wohl am ehesten als Houghton-Cassegrain-Variante bezeichnen.

Das 1963 herausgebrachte Zeiss-Oberkochen-Mirotar (West) ist ein Maksutov-Typ (es hat sogar zwei-Meniskuslinsen in der vollen Apertur! (Linsenschnitt des 1000mm f5.6 in diesem Link).

Des Rätsels Lösung: die sogenannten katadioptrischen Dialyte!

Schon sehr lange war in der astronomischen Optik ein wesentlich grundlegenderes optisches System der Kombination von Linse und Reflektor bekannt: schon Newton soll darüber nachgedacht haben (!) aber erstmals schriftlich dokumentiert wurde es 1814 als Patent von F.W. Hamiltonheute bekannt als das Hamilton-Teleskop.

Damit war das Grundprinzip des katadioptrischen Dialyts (auch Brachymedial genannt) in der Welt. Es wird nach gut 200 Jahren immer noch stetig und erfolgreich weiterentwickelt – und es ist die Grundlage aller katadioptrischen Foto-Objektive.

In der einfachsten Form besteht es aus zwei Linsen: einer vorderen Sammellinse aus Kronglas (Lichteintritt) und einer hinteren Meniskuslinse aus Flintglas, deren hintere (konvexe) Fläche verspiegelt ist. Dieses hintere Element wird man mehr als 60 Jahre später (nach Mangins Erfindung für Scheinwerfer-Spiegel 1876) auch als „Mangin-Spiegel“ bezeichnen … obwohl er 1814 bei Hamilton längst da war – als katoptischer Teil des Hamilton-Teleskops.

Vom Grundaufbau von Hamilton habe ich keine Creative Commons Abbildung verfügbar, aber hier in der „telescope-optics“-Website finden sie das Bild und eine ausführliche Beschreibung und zusätzlich Informationen über Folgeentwicklungen: die Schupman-Wiedemann-Busack-Riccardi-Houghten-Honders-Terebizh-Teleskope bzw. -Kameras.

Das Maksutov-Teleskop ist demnach nur EINE spezielle Variante der katadioptrischen Dialyte! 

Maksutov hat seine Entdeckung der Meniskus-Korrektoren-Lösung selbst so beschrieben, dass ihm angesichts des Mangin-Spiegels die Idee kam, die Meniskus-Linse von der  (sphärischen) Spiegel-Fläche zu lösen und nach vorne zur Apertur zu verschieben. M. suchte nämlich nach einer Lösung für ein robustes, abgedichtetes Teleskop für Schulen, das kostengünstig in Massen herstellbar sein würde! Da lag es natürlich auf der Hand, die Möglichkeit eines verspiegelten Zentralflecks auf der Rückseite des Meniskus als Cassegrain-Sekundärspiegel zu überprüfen … was dann erfolgreich war. Ob er auch Lösungen untersucht hat, für den Primärspiegel die Mangin-Lösung beizubehalten, ist mir nicht bekannt. Er soll insgesamt 46 Systemvarianten durchgerechnet haben … Ob ihm das Hamilton-Teleskop damals bekannt war, weiß ich nicht.

Sieht man sich die verschiedenen Lösungsvarianten der katadioptrischen Dialyte im Detail an, entdeckt man z.B., dass die Bauweise der Korrektorlinsen im Houghton-Teleskop dem Linsenschnitt in den Carl Zeiss Jena „Spiegelobjektiven“ (1961) entspricht.

Bild 3: katadioptrisches Dialyt nach Houghton, diese Korrektor-Bauform wird offensichtlich im Zeiss Jena Spiegelobjektiv verwendet  – Quelle: Wikipedia – Autor: Rick Scott – https://creativecommons.org/licenses/by/3.0/

Gegenüber den „einfachen“ Frühformen reiner Spiegelteleskope verfolgte man beim katadioptrischen Dialyt von Anfang an zwei grundlegende Ziele:

  • Die Verwendung von ausschließlich sphärischen Flächen bei Linsen- und Spiegelflächen (Kosten! Massenfertigung! Genauigkeit!);
  • das Erreichen sehr großer Bildfelder mit hoher Bildgüte, z.B. für Astrographen-Kameras.

In der deutschen Wikipedia gibt es einen recht guten Übersichtsartikel über die katadioptrischen Dialyte – allerdings ohne Grafiken. Wer mehr Details braucht, dem empfehle ich nochmals die „telescope-optics“-Website.

Während in der Zeit vor dem 2. Weltkrieg bei astronomischen Teleskopen und Kameras bevorzugt asphärische Korrekturen zur Optimierung der Bildqualität zum Einsatz kamen (Beispiel: Ritchey-Chretien-Cassegrain!) wird in der jüngeren Zeit bevorzugt mit sphärischen Optik-Flächen gearbeitet. Terebizh argumentiert in seiner Veröffentlichung von 2007 damit, dass sphärische Flächen sehr viel präziser und reproduzierbarer hergestellt werden können (also nicht nur billiger sind). Die damit erzielte Bildqualität sei nachweislich besser. Hinzu kommt, dass man – spätestens ab den 1980er Jahren –  neuerdings wesentlich mehr Freiheitsgrade im Bereich der Linsen-Korrektoren mit neuen Glassorten und effizienten Beschichtungen hat.

Hier gehts zu Teil III – zu den Fotoobjektiven von 1946 bis heute.

Herbert Börger, Berlin, 31. Oktober 2020

 

Altweibersommer die DRITTE – 2020

(Alle Bilder Copyright fotosaurier 2020.)

Nach zwei knochen-trockenen Jahren (2018/19) im Raum Berlin hat dieser Herbst noch einmal genügend Feuchtigkeit gebracht, um einen Morgennebel zur richtigen Zeit zu produzieren.

Ohne die Nebel-Tautropfen – bei der richtigen Wetterlage – sieht man ja die Werke der Baldachinspinne kaum: den „Altweibersommer„. Am 1. Oktober war es endlich mal wieder so weit; zwar mit bescheidener Ausbeute aber immerhin sehr anregend und erkenntnisreich …

Anscheinend hatte der Tau auf den Spinnfäden schon lange gelegen bis ich das richtige „Foto-Licht“ hatte (Blitz kommt für mich nicht infrage!) – vielleicht hatten die Gespinnste auch schon vom Vortag gestanden, bis der Tau sie endlich sichtbar machte. Das Resultat sieht man auf dem ersten Bild: die „Perlenschnüre“ der Tautropfen sind nicht so regelmäßig wie sonst.

FreiOtto_DSCF0191_100%_blog

Bild 1: Unregelmäßige Tautropfen-Ketten auf den Spinnfäden des Altweibersommers. 100%-Vergrößerung aus Bild 2.

Stellenweise sind sich einzelne Tautropfen zu größeren Tropfen zusammengeflossen – gleichzeitig sind (fast immer ÜBER den großen Tau-Perlen) Lücken in den Ketten entstanden.

Bei dem nächsten Bild hatte ich eine Assoziation – und dann ein Déjà vu:

FreiOtto_DSCF0191_blog

Bild 2: Ist dies der „Baldachin“ nach dem die Baldachinspinne ihren Namen bekommen hat? Oder auch: „Zu Ehren Frei Otto, dem Architekten des Münchner Olympiastadium-Daches!

Um ehrlich zu sein: meine erste Assoziation war ein Hochzeitskleid (wohl weil wir gerade eine Hochzeit in der engeren Familie hatten). Dann fiel es mir wie Schuppen von den Augen: genau das ist der „Baldachin“ nach dem die diese Gebilde produzierende Baldachinspinne ihren Namen haben könnte.

Etwas später hatte ich dann die Assoziation mit dem Dach des Münchner Olympiastadiums / Architekt Frei Otto – ausgelöst durch eine Kolumne von Götz Aly (Historiker in Berlin und Kolumnist der Berliner Zeitung)  in der er an den – kürzlich verstorbenen – Architekten Conrad Roland erinnerte. Conrad Roland seinerseits war Kollege von Frei Otto bei der Realisierung des Olympia-Daches. (Die Kolumne finden Sie hier.) Kurz danach erfand Conrad Roland dann derartige Seilstrukturen als Klettergerüste auf Spielplätzen – wo sie sich dann in den 1970er Jahren bis heute stark durchsetzten!

Deshalb widme ich das folgende Bild 3 Conrad Roland:

Oleander1_DSCF0200_blog

Bild 3: „Zu Ehren Conrad Roland„, dem Erfinder der Klettergerüste aus gespannten Seilen.

Der Oleander ist neu in unserem Garten. Hier spannen vier Knospentriebe sozusagen ein Tetraeder auf – und die kleine Spinne hatte offensichtlich Probleme, aus dieser Geometrie wieder herauszufinden. Vielleicht ist das eine Analogie zu dem bekannten optischen Phänomen: egal aus welcher Richtung man mit einem Laser auf einen aus Glas geschliffene Tetraeder trifft: der reflektiert diesen Laserstrahl exakt in sich zurück (weshalb man mit dem auf den Mond aufgestellen Glas-Tetraeder den exakten Abstand des Mondes zur Erde messen konnte – über die Laufzeit des Lichtes hin und zurück!)

Möglicherweise finden Sie diese Assoziation etwas skurill?

Dann gehen wir doch einfach wieder zu den ästhethischen Aspekten – obwohl die Spinne natürlich keine Ahnung von unserer Ästhetik als Mensch hat …

Hier könnte die Spinne – angeregt von der klare Ästhetik der Oleander-Blätter (ja das haben Sie richtig erkannt: es sind Zweiecke!) zu einer schlichten und einfachen Struktur angeregt worden sein:

OleanderBasic_DSCF0197_blog

Bild 4: Very basic – sehr minimalistisches Spinnweben-Design, passend zum Oleander-Blatt

Neu ist in diesem Jahr 2020 gegenüber Altweibersommer 2016 und Altweibersommer 2017 (Link zu den früheren Artikeln) noch, dass ich eine andere Kamera verwende: ein Fujifilm GFX100. Mit dem verwendeten Makroobjektiv 120 mm f/4 zusammen sind das „schlappe“ 2.481 Gramm am langen Arm (ohne Objektivdeckel!). Ich brauche nun kein Fitnessstudio mehr.

Über diese beeindruckende Kamera wird noch an anderer Stelle einmal ausführlich berichtet werden.

Ich nenne die Kombination auch „mein Garten-Mikroskop„. Mit 102 Mega-Pixel gibt es hier sehr große Reserven für Detailvergrößerungen und Details die man vorher durch den Sucher nicht gesehen hat. Hier ein Beispiel:

FreiOtto2_DSCF0159_blog

Bild 5: Dieses Bild ist bereits ein Ausschnitt aus dem 102 MP-Bild von etwa einem Viertel der ursprünglichen Bildfläche.

Das folgende ist eine Teilansicht mit 100%-Vergrößerung (ein Pixel auf Ihrem Bildschirm entspricht etwa einem Pixel auf dem Kamerasensor).

FreiOtto2_DSCF0159_100%_blog

Bild 6: 100% Ansicht eines Ausschnittes aus Bild 5. Sensor-Empfindlichkeit ISO 800!

Der Sensor fügt dem Bild mindestens bis ISO 800 kein Rauschen hinzu – die Szene wirkt auch bei 100%-Vergrößerung noch überzeugend plastisch.

Ausser (kleinen) Nachjustagen an der Gradationskurve (meistens S-förmig) wurden die Bilder weder in Farbe noch in der Struktur nachbearbeitet (alle Parameter bei Aufnahme in Null-Stellung – Filmsimulation „Velvia“). Keinerlei Schärfung!

Das wirkt bei den letzten drei Bilder für mich ähnlich überzeugend.

Dahlie1_DSCF0147_blog

Bild 6: Dahlie

Vergehen1_DSCF0143_blog

Bild 7: Rose

Dornen_DSCF0168_blog

Bild 8: … einfach ein paar Rosenblätter …

Herbert Börger

Berlin, 20. Oktober 2020