My Crazy Lenses – Topcor R 30cm f/2.8 and its Modern State-of-the-Art Counterparts – „Supertele-Lenses“

  1. Travel on my time-machine
  2. The known Facts – Topcor 30cm f/2.8
  3. Topcor 30cm f/2.8 – Optical Performance
  4. The Reference: Canon EF 300mm f/2.8 IS USM
  5. Three more 300mm f/2.8-teles
Fig1: From left to right – Tropcor R 30cm f/2.8, Arsat Yashma 300mm f/2.8, Tamron SP LD (IF) 300mm f/2.8, Minolta AF Apo-Tele 300mm f/2.8, Canon EF 300mm f/2.8 L IS USM

1. On my time-machine:

I own the Topcor R 30cm f/2.8, which I am looking at here, since a few years – but I have not used it too often.  It is very heavy, long and dark, giving the impression of a tank-breaking weapon: you definitely will get trouble at any security check nowadays … and in the best case you will earn compassion instead of admiration! Too bad, because it is an ingenious piece of optical engineering.

Information about Topcor lenses today are rare and not always reliable. I will restrict myself to reliable information and I will try to verify legends … or destroy them.

So I entered my time machine and travelled back into the year 1958. I was 13 years old at my arrival there – and at the Topcon (Tokyo Kogaku) factory I met a team of innovative engeneers, who were fanatically burning for the QUALITY of their products – and really proud of it! The year before (1957) they had introduced a new SLR-camera (Topcon R), which was designed in Bauhaus-style, i.e. with clear and modern lines – and they were ready to ignit a firework of innovations around the SLR-concept within the next few years (from first-in-industry TTL-exposure-metering to first electric winder).

And they had introduced a line of lenses for this SLR-system-camera, among which the Topcor 30cm f/2.8 peaked out. Another „first-in-industry“-innovation.

I looked around in the photo-stores and could not find any Canon- or Nikon-SLRs there: the dealers told me, that both companies were just bringing out SLRs. It seemed, that the Topcon-people had considered the German SLRs, which were already on the market, as their competition. Personally at that time I was already a SLR-user (of my father’s Contaflex – which means, that from time to time my father was still allowed to use it himself).

Everybody, who is acqainted with the rules of the market, would have expected, that shortly after an innovation like the Topcor R 30cm f/2.8, the major competitors would bring out a similar product.

But that did not happen – so I returned in my time-machine. Finally I found out, that it took the new japanese competitors more than a decade! And there was no comparable Lens in Europe, as far as I could see. 13 years later Nikon presented a prototype, to be tested during the Olympic Winter Games of Sapporo in 1972.

The real next step was taken by Canon with a 300mm f/2.8-Lens for their new FD-System, using a lens made of FLUORITE in 1973 (or 75?)! This was finally 16 years after the arrival of the Topcor-lens … and just in that year, when Topcon stopped the production of their supertele-lens.

2. The known facts:

This Topcor R 30cm f/2.8 monster-tele-lens with 300mm focal length was presented to the world in 1958 („Topcon Club“ says 1957!) – one year before Canon or Nikon started to produce any SLR – and 13-16 years before any other lens- or camera-maker presented such a fast 300mm tele-lens. Not only at the 1964 Olympic Games in Tokyo but all the time until 1972 it was without any competition. As a consequence, there even was produced quite a number of lenses with Nikon mounts! Next to Topcon, Canon brought out its Canon FD 300mm f/2.8 S.S.C. Fluorite lens in 1973 – setting the level for professional superlele-lenses for the next decades and until today.  Just a few years later Topcon went completly out of the business with SLR-cameras and lenses. Sad, but even the extensive book „Topcon Story“  by Marco Antonetto and Claudio Russo (1) does not answer the question „why?“.  Today Topcon is a market-leader in geodesic instruments.

Stephen Gandy (3) estimates –  – that 700-800 lenses have been produced in total during 18 years of production.

Fig. 2a:
Fig. 2b:


Fig. 2c: Lens scheme of Topcor 1:2.8 30cm  – source:

The lens is made of six single lenses in four groups – of which lens no. 6 (group 4) is the filter (diameter 39mm), which is, of course, part of the optical design! This filter is an early (maybe the first) example of a filter which is positioned in a slot in the rear part of the lens-body. In the book „Topcon Story“ (page 128) there is an error in the spreadsheet listing of the data of the R.Topcor-lenses: the data in the last line are the data of the „300mm 2.8“ and not of the f/5.6-lens. Here the no. of elements is „five“, which is correct, when you don’t count the filter as an active optical member …

The lens has a preset diaphragm and has a built-in sunshade (telescoping in two stages!). It is 383 mm long (from camera-flange to front-edge of the pulled-back sunshade – total length with shade pulled out is 477 mm)  and weighs 3.1 kgs (without front and rear caps). Measured at my sample (ser. no. 34.1359). The initial sales-price was $ 1.125,–. (In the literature  you will find: 415/412 mm length and 3.3 kgs weight).

It may be interesting to mention here, that right away from the introduction of the first Topcon-SLR, an extremely ambitious lens-program was planned – however, realized only partly. The Topcor R 13,5 cm f/2.0 (6 lenses) had also preset diaphragm and it was discontinued with the Topcon RE camera system – so it is said to be extremely rare. It has a yellowish color cast (due to rare-earth-glass?), not a big problem with todays digital cameras …

However, a 50mm f/0.7 lens, which is mentioned in „Topcon Club“ only, was never made for the SLR-camera market – maybe, this was one of the very early oscilloscope-registration-lenses, which are also known from Germany and GB even at WWII-times.

And a 1000mm f/7 catadioptric lens was only experimentally made in 1958.

„Topcon Club“ (2) writes about this:

„The interchangeable lenses which appeared with the appearance of TOPCON R are various kinds of the Auto Topcor of 35mm/100mm, and R TOPCOR (a priset diaphragm) of 90mm/135mm/200mm/300mm among these – although the bright thing and the dark thing were prepared about 135mm and 300mm – it should mention especially – it is the „high-speed lens“ of 135mm f2 and 300mm f2.8. 50mm f0.7 – such a bright lens was already completed during wartime by the Tokyo optics. Do you believe it ? Although possibly this grade was an easy thing, even so, the 300mm f2.8 lens will be an astonishment thing in 1957. I talked in detail on „the page of TOPCOR“ about this lens. We have to wait for marketing of the product of NIKON which is the next 300mm f2.8 lens at any rate till 1977. However, TOPCON did not build the super telephoto lens 500mm /800mm those days. Furthermore, the Refrector Topcor 1000mm f7 is appearing in the catalog in ’59. However, this was not launched regretfully.“

Later – from 1969 on – a RE Topcor 500mm f/5.6 telephoto-lens was even produced with automatic diaphragm and meter coupling!

Can such a fast long telephoto lens like this early 300mm f/2.8-design without Fluorite- or ED-lenses be any good – on the scale of professional photography? There are hints, that rare-earth glasses were used to make these lenses (also for the other famous 13,5cm f/2.0, also supplied since 1958). But I do not know details about this.

I will answer the question about the optical quality here – also comparing this lens with a modern top-notch tele-lenses like Canon EF 300mm f/2.8 L IS USM, which I personally classify as today’s state-of-the-art reference, supported by photo-friend Thomas, who borrowed his Canon lens to me.

Finally I will take a glance on a state-of-the-art modern astronomical refractor, which normally does perform at diffraction-limited resolution on stars!

Topcor 30cm f/2.8 – The Optical Performance on analog film (year 1969):

Stephen Gandy (3) wrote in his blog:

The Topcor 300/2.8 enjoyed a   great reputation as a fast, sharp lens.    You only have to read the lens tests by Camera 35 in 1969 to understand why.  WIDE OPEN its resolution was 56lines/mm center and 34lines/mm at the edges.  By f/8 it was 80 lines/mm center and 65 at the edges.   Many normal lenses don’t achieve this sharpness — much less 300/2.8 leviathans !  Camera 35 summed it up by saying „INCREDIBLY FANTASTIC.“  I would have to agree.

(In the original text in Stephen’s blog, the reported resolution values are noted as „56mm“ or „34mm“. I have taken the freedom, to correct this to what it should read: lines per mm, „lines/mm“!)

The resolution values, which I use in my digital IMATEST measurements, typically are given in „Line-pairs per picture-height“ = „LP/PH“. Picture-height being 24mm with 24×36-format, you have to divide the „lines/mm“-values by two to get to „line-pairs“ – and then multiply with 24 to achieve LP/PH.

The highest given value of 80 lines/mm corresponds to 960 LP/PH stopped down to f/8 in the center or 760 LP/PH at f/8 at the edge – the lowest value 34 lines/mm with open diaphragm at the edge corresponds to 408 LP/PH.

What does that mean?

In 1969 the test results for resolution were measured on film – „Modern Photography“ used Plus-X Pan with standardized development – and the reading of the „just resolved“ line-pattern was done with a standardized enlarging glass … I personally used the method myself at that time, too, and it is quite reproducible as long as the same person does the reading … It is somewhat sensitive to the vision-capabilities of the reading person! And of course the grain of the analog film material (negative b&w film!) is the limiting factor for the resolution-reading on film for really high resolutions.

Generally to my experience, the Plus-X Pan film’s resolution limit is 1,000-1,200 LP/PH. For sports and other high-speed applications, however, the photograph will have used Tri-X or similar higher-sensitivity materials, which resolve quite a bit lower. This means, that this early and fast 300mm-lens came pretty close to use the full resolution-power of the analog films of that time! At least stopped down.

Today’s modern 24 MP-sensors deliver resolutions of 2,000-2,400 LP/PH using MTF30 (30% contrast) as  the parameter for reading out the resolution values from the MTF-curve. My Sony A7R4-Camera (62 MP), which I use for my measurements, has a Nyquist frequency of 3.168 LP/PH and delivers up to 3.800 LP/PH-readings with the best known lenses.

The following spreadsheet gives an overview on the physical data of the Topcor-lens and the other lens-monsters, analysed here:

Fig. 3: Physical Data of the five 300mm f/3.8-Lenses – source: measured by fotosaurier

3. Topcor 30cm f/2.8 – Optical Performance

My IMATEST-Results of the optical properties of the Topcor R 30cm f/2.8 lens:

To exclude potential vibration-initiated degradation of resolution in my test-shots at these long focal-lengths I used my heavy (>10 kgs) and sturdy astronomical telescope-mount:

Fig. 4: My massive astronomical lens mount – here with SonyA7R4 attached to Topcor 30cm f/2.8 – source: fotosaurier
Fig. 5: The set-up keeps the lens and camera steady even at 0,4 seconds. – source: fotosaurier

Following you see the results of my IMATEST-measurements:

Fig. 6: Optical measurment-results for Topcor R 300mm f/2.8 adapted to Sony A7R4 with 62 MP – resolution values given in LP/PH – source: fotosaurier
Fig. 7: Resolution measurment-results for Topcor R 300mm f/2.8 as graph – source: fotosaurier

The lens is unique at that time regarding to „speed“ – an extremely ambitious piece of optical engineering. Remind, that the distortion is practically zero and the CA-area in the center 0,8-1,4 pixel – 1 pixel at Sony A7R4 is 3,8 microns on the sensor!

What is ccenter, what is part way and what is corner? In the following graphs from IMATEST you see: „Part-Way“ is the large part of the picture extending close to the narrow side (left/right). „Corner“ is the narrow area outside the second dotted circle on the picture below.

Fig. 8: „Center“ resolution is calculated as mean from the values inside the inner circle (in my setting always two values), „part way“ is the mean of all values between the inner and outer circle, „corner“ is the mean of all values positioned outside the outer circle – source: fotosaurier
Fig. 9: Topcor R 30cm f/2.8 resolution plotted over radius of picture circle – source: fotosaurier

So, let’s compare the measurements to the value, that were given in analog times on film:

The comparison in the spreadsheet Fig. 10 shows: The  lens „out-resolves“ normal analog films by far! Stopped down it reaches the limits of the analog medium even at the edges of the frame! 

Fig.10: „Camera35’s“ resolution measurements for Topcor R 30cm f(2.8 of 1969 on film compared with digital IMATEST values (at 30% MTF = „MTF30) with Sony A7R4 – source: fotosaurier

I found no real technical explanation, how Topcon-engineers managed to generate this phantastic lens at that time without ED/LD/AD/Fluorite-glass. There is a second tele-lens – the 13,5cm f/2.0, also introduced 1958, with first-in-industry potential – and finally the Topcor 2,5cm f/3.5 super-wide, which surprises with best-in-class resolution values (see my blog-article on historical 24/25mm-lenses!).

If somebody knows the secret: please, tell us!

Look at a sample picture taken with the Topcor at the end of this article.

Now, let’s have a glance on some other historical Superteles:

Fig. 11: From left to right: Topcor R 300mm f/2.8, Canon EF 300mm f/2.8 IS USM, Minolta AF Apo-Tele 400mm f/2.8, Tamron SP (60B) 300mm f/2.8 LD (IF), Arsat Yashma-4H MC 300mm f/2.8

4. The Reference: Canon EF 300mm f/2.8 IS USM

Fig. 12: Canon EF 300mm f/2.8 IS USM – source: fotosaurier

Canon EF 300mm f/2.8 IS USM is rated as the reference of this class of lenses.  In this case it is not the latest „Mk II“-version of it, which came out 2011 –  but the first version of 1999, which is tested here. It represents nevertheless already the top-class of the super-teles (as all its predecessors since 1973!)

Here are the IMATEST results of its optical properties:

Fig.13: Optical properties of Canon EF 300mm f/2.8 IS USM from my IMATEST-measurements, with autofocus – source: fotosaurier

And here the Graphs of resolutions center, part way and corner:

Fig. 14: IMATEST-Resolution (LP/PH) of Canon EF 300mm f/2.8 IS USM – center – part way and corners – source: fotosaurier

Not may comments necessary to this – the figures and graphs should speak for itself … Just to mention: the distortion at the Topcor-lens is even lower than that of the Canon – but both are neglectable for a supertele!

Canons leadership in this class of professional supertele-lenses was generated by the policy, not to drop a product into the market, which was „just possible“ at present, but to persue a consequent plan for the future: to solve the „secondary spectrum“-problem of long tele-lenses, which means to use extreme „anormal dispersionlens-materials, which do the job without optical compromising.

So in 1975 – 2 years after Nikons first presentation of its first 300mm f/2.8 ED-lens (which was not very convincing and had to be replaced four years later by the ED-IF-version) – Canon introduced their FD 300mm f/2.8 Fluorite-Supertele, in which they used a front-lens made of fluorite-monocrystal material (no glass!) and a UD-glass-lens. This lens war already praised close to perfect (absence of chromatic aberrrations). Canon accepted for this a compromise, which made the lens longer and heavier: to protect the soft and sensitive fluorite-crystal-material in the front lens, there was a fixed additional plane protection element of glass in front!

Finally new fluorite-glass-formulations became available, which allowed to drop the sensitive crystal-lens. Over the introduction of Autofocus (EOS – 1987) and still more glass-elements, Canon finally introduced the legenday lens EF 300mm f/2.8L IS USM in 1999 with very fast AF and image-stabiliser, which is tested here.

Enjoy the results!

5. Finally – three more 300mm f/2.8-teles:

  • Minolta AF APO-Tele 300mm f/2.8 (1985)
  • Tamron SP LD (IF) 300mm f/2.8 (60H) (1984)
  • ARSAT MC Yashma-4H 300mm f/2.8 (1990?)

For these three lenses I also have to thank foto-friend Thomas, who borrowed them to me!

5a. Minolta AF APO-Tele 300mm f/2.8 (1985)

Fig. 15: Minolta AF APO-Tele 300mm f/2.8 – source: fotosaurier

This lens had a mechanical defect: the diaphragm could not be closed below f/5,6. However: in these lenses principally mainly the open aperture is really significant – why should you carry around such a weight, to make pictures with f/11?

Fig. 16: Optical properties of Minolta AF 300mm f/2.8 Apo – source: fotosaurier
Fig. 17: IMATEST-Resolution (LP/PH) of Minolta AF 300mm f/2.8 Apo – center – part way and corners – source: fotosaurier

This Minolta lens comes closer to the Canon-legend than any of the others – but with quite som distance in resolution in the corners open aperture.

Excelent lens!

5b. Tamron SP LD (IF) 300mm f/2.8 (60B) (1984-1992):

Fig. 18: Tamron SP LD (IF) 300mm f/2.8 (60B) – source – fotosaurier

This is the shortest and lightest lens of the quintuple, which arrived even one year before the Minolta – containing two low-dispersion (LD) lenses – with manual focusing:

Fig. 19: Optical properties of Tamron SP 300mm f/2.8 LD (IF) 60B – source: fotosaurier


Fig. 20: Imatest resolution graphs of Tamron SP 300mm f/2.8 LD (IF) 60B – source: fotosaurier

Tamron – third party winner: Great Lens!

5c. ARSAT MC Yashma-4H (1990?):

Fig 21: ARSAT MC Yashma-4H – source: fotosaurier

I do not know much about this lens. Funny about it is to me, that in most cases, when it is offered as a used lens, it is given the addendum „sovjet lens„! In 1990, when it was delivered first (I saw other sources with the date 2007 …) the Sovjet Union no longer existed – which means that, ARSAT being located in KIEW, the lens has UKRAINIAN roots.

As far as I know, it was generally produced in Nikon-mount.

Fig. 22: Optical performance of Arsat MC Yashma-4H 300mm f/2.8 – source: fotosaurier


Fig. 23: Resolution graphs of ARSAT MC Yashma 300mm f/2.8 – source: fotosaurier

Open aperture and stopped down the lens is convincing in the center – about 10-15% below the other superteles – but with still very good CA in the center.

From f/4.0 it is also very good in the large part of the frame – just 10% below the Topcor.

In the corners it is on par with the Topcor open aperture – but it does not improve so much while stopping down. For analog film use it was also a good lens – with exception of the softer corners with typical CA-values of non-apochromatic lenses … and a much higher distortion than all the other superteles.

What about apochromatic correction in supertele-lenses?

Lenses of 300mm f/2.8 need apochromatic correction to be really sharp. The chromatic aberrations („secondary spectrum“) are the major restictions in sharpnes for these long focal lengths all over the frame! All these lenses, tested in this report, have apochromatic correction – in varying degrees of perfection! In the ARSAT Yashma the apo-correction is only partly successful.

Herbert Börger

fotosaurier, Berlin 13.02.2023


1- „Topcon Story – Topcon Enigma“ by Marco Antonetto and Claudio Russo, by Nassa Watch Gallery, Collectors Camera Publishing, CH 6907 Lugano, Switzerland – 1997

2- Web site „

This, the first super fast long telephoto lens produced for any camera system world wide, came to the market in 1957. This was a large and heavy lens, with a 130mm maximum diameter, a length of 412 mm and a weight of 3.3 kg. The optical design was one of 6 elements in 4 groups. The selling price, at the time, was 135,000 Yen making it the most expensive lens on the market. Special filters slide into a slot at the rear of the lens barrel and this lens was probably the first to use this method. Unlike the 135mm f2 R Topcor, this lens was listed in catalogues into the later half of the 1970s. Because of it’s large aperture it was chosen as the official lens of record for the Tokyo Olympics. An odd thing concerning this lens is that many of those remaining have been modified for the Nikon mount, while those with the original Topcon mount are very scarce. The early lens case was made of leather but later on Topcon began supplying a hard case with the TOPCON emblem promontory displayed. The R Topcor 300mm f2.8 lens still compares favorable, with regards to regards to sharpness and contrast, to modern lenses with fluorite elements. Today this lens is almost forgotten but was highly praised in former times.

3- Web site of Steven Gandy: „“

Fig. 24: Mathäuskirche in Hambühl, seen from 1,2 km distance with Topcor 300f2,8  (taken at f/5,6 with Sony A7R2 at iso800) – narrow vertical crop of nearly full frame, which you see here at about 65% enlargement – „ooc“ – no post-treatment of the picture) – source: fotosaurier


Two crazy lenses of the 1950s – Angénieux 50mm f/0.95 and Carl Zeiss Jena Biotar 50mm f/1.4 for 35mm Cine-Format – plus Canon Lens 50mm f/0.95 from end of 60s

A few weeks ago I was blessed, having an Angénieux 50mm f/0,95-lens and a „Biotar 50mm f/1.4″, at the same time in the same place !

An Angénieux 50mm f/0,95-lens in perfect optical quality and with aperture-mechanism  and rehoused into a perfect Sony-E-body, focusing to infinity and ready for measurement in my optical IMATEST-Lab…. this is really a „unicorn“!

Fig. 1: Ultra-rare 50mm f/0.95-lens fpr Cine 35 movie-format – this lens-series (10mm, 25mm and 50mm) founded Pierre Angénieux‘ high reputation in cinematic optics! – source: fotosaurier

The „Biotar 50mm f/1.4″, in great overall condition, which I even did no know about, before I saw it for the first time.

Fig. 2: One of the best high-speed-lenses ever made in Jena – Biotar 50mm f/1.4 of 1955/56 for Pentaxflex AK-16 cine-camera system – professional performance for professional use! – source: fotosaurier

Photo-friend and co-nerd Thomas handed out both ultra-rare lenses to me for closer optical inspection. I am a happy man!

Fig. 3: Two very rare lenses at the same time in the same place … in my IMATEST-Lab! Sheer happiness! – Source: fotosaurier
  1. Angénieux 50mm f/0,95 (Type M1):

Thomas has proven, that it is possible to re-house the Angénieux-lens for general photographic use with infinity focus:

Fig. 4: The early super-fast Angénieux 50mm f/0.95 lens 0f 1954/55 here in a „Unikat„-version – the basic lens is directly fitted to E-Mount for Sony – source: fotosaurier

Starting in 1953 Pierre Angénieux brought out a series of lenses with f/0.95. In 1953 it was firstly the 25mm f/0.95 (which became the most famous Angénieux lens due to the use in NASA-spaceflights to the moon!) made for cine 16mm format and the 10mm f/0.95 for 8mm-cine.

A few months later he pushed out also a version for 35mm-cine: the 50mm f/0.95 – probably this was in in 1954 – originally in C-Mount. Hartmut Thiele dates this to 1955. It is important to understand, that this is not a lens made for still-photogray amateur use – but Pierre Angénieux showed here all his knowledge dedicated for professional cine-use. He went to the limits of everything, which was possible with glass-types and design- and production-methods at that time!

If you need more information on Pierre Angénieux, please look up my Blog article here!

Following my measurements on the IMATEST-target the picture-circle, that this lens covers is 37mm – so it is falling a bit short from the 43mm needed for covering the still-photo-35mm-full-format (24 x 36 mm).

Fig. 5: Picture of IMATEST-Target through Angénieux 50mm f/0.95 at f/0.95 in the 24 x 36 mm full-frame of the Sony A7R4 – Source: fotosaurier

This test-set-up generates the following resolution-measurement results:

Fig. 6: Resolution at center/part way/corner of Angénieux 50mm f/0.95 on Sony A7R4 (60,2 MP-sensor – 9.504 x 6.336 pixels!) at standard distance full-frame (24×36) – Source: fotosaurier

In spite of the heavy darkening in the corners, the system does still generate results, but these readings are not very reproducible … these corner-readings are located clearly outside the picture-circle for this lens!

So I made a second set-up with the camera set a little bit further away from the target, so that the individual measuring areas move somewhat towards the center of the picture and do not suffer too much from the dark areas out of the picture circle of the lens.

Messpunkte im Target Angénieux f8
Fig. 7: Angénieux 50mm f/0.95 moved a bit backwards from the target – measurement-areas (marked violet rectangles) moved somewhat further towards the picture center – avoiding overlap with the dark corners – this picture is at f/8, showing a sharper limit to the dark corner-areas! – source: fotosaurier

Now the furthest measurement locations are at 82% of the full-frame picture radius, clearly inside the bright circle which this lens covers at 86% of full-frame radius!

The result is seen in the following picture:

Fig. 8: Resolution with refocussed Angénieux lens 50mm f/0.95. The corner-resolution-values are still located outside the Cine35-picture-frame!!! The „peak“ at f/4 in the corner reading is real – no error – never seen anything like this with any other lens! – source: fotosaurier.

In Chapter 4 at the end of the article I will ad thwe measuremts at cine-format for all three lenses (Super 35: 18,66mm x 24,89mm). This will give more realistic resolution-readings. The Super35 crop-mode on the A7R4 is  6.240 x 4.160 pixels.

2. Carl Zeiss Jena Biotar 50mm f/1.4:

About the same time, DDR-based Carl Zeiss Jena created a high-speed lens for its own Pentaxflex AK-16 cine-camera system in Pentaflex-16 mount.

It seemed logical to follow the already successfull BIOTAR-formula and it came out around 1955 or 1956 the Biotar 50mm f/1.4:

Fig. 9: Carl Zeiss Jena Biotar 50mm f/1.4 for Cine-Format, arriving 1955/56 – Source: fotosaurier

Looked at with the sensor of the Sony A7R4, the picture-circle is a bit larger than with the Angénieux … there are only minimal dark corners!

Fig. 10: Full-frame picture of IMATEST-target through Biotar 50mm f/1.4 at f/1.4 – Source: fotosaurier

Of course, we have here the same situation, that the corner-measurements are quite a bit outside the cine-picture frame of typically 16mm x 22mm:


I will also with this lens repeat the measurement, restricting the resolution-target to the cine-picture frame – see section 4 at the end of the article.

The results show for both lenses, that the resolution in the center is extremely high – even wide-open! Both lenses are extraordinary lenses of their time – the mid-1950s!!!

Unique: „first-in-industry“ point of view for the Angénieux 50mm f/0.95 in its extreme speed, without sacrifycing to the center resolution!

3. Canon Lens 50mm f/0.95 for rangefinder (Canon7) cameras with LTM 39mm – of 1969

As we are just talking about early historical high-speed lenses, the step to the famous CANON 50mm f/0.95 (for rangefinder) is logical. It is a step of 15 years in time – and this time the lens is really dedicated to 35mm still-photo full-format 24mm x 36mm!

Fig. 12: Angénieux 50mm f/0,95 of 1954, left, and Canon 50mm f/0.95 of 1969 / the normal still-photo-version here – Source: fotosaurier

Here is my comparable resolution-measurement with Sony A7R4 for this lens at full 24×36-format:

Fig. 13: Resolution-Graph of Canon 50mm f/0.95 on Sony A7R4 (60,2 MP) – Source: fotosaurier

To allow for the necessary rangefinder-coupling besides the huge rear lens, this lens is „cut free“ at the edge for this purpose.

Fig. 14: Cut-away at the 50f/0.95 Canon’s rear lens, to allow for the rangefinder-coupling! – source: fotosaurier

However, the 50mm f/0.95 lens was also released in a version for video cameras, with an additional engravureTV“ on the nameplate: consequently these lenses were delivered with C-mount. As these lenses do not need the rangefinder-coupling, the rear lens is not cut at the edge here.

Hopefully I wil be able to add a picture of the 50mm f/0.95 TV-lens rear section for comparison soon.

4. Finally: Resolution-Data of these Lenses, measured for the Cine Super35-format, which the Angénieux and CZJ Biotar Lenses are originally dedicated to – on all three lenses:

a) Angénieux 50mm f/0.95:

Fig. 16: Angénieux 50mm f/0.95 – absolutely phantastic for this „first-in-speed“  – source: fotosaurier

b) Biotar 50mm f/1.4:

Fig. 17: Biotar 50mm f/1.4 is the clear winner of the resolution comparison!


c) Canon 50mm f/0.95:

Canon lens f=50 mm f:0.95_A7R4_Super35_Graph
Fig. 18: Canon Rangefinder 50mm f/0.95 – primarily dedicated to still-photo 24×36 but also delivered as a TV-version – just a bit better than the Angenieux, but 15 years later! – source: fotosaurier

All three lenses have very low chromatic aberrations, Biotar and Canon are close to zero in distortion, while the Angenieux has around -1% distortion, which is still excellent for such an early, extreme lens!

5. Appendix: Here you see all properties of the three lenses in detail – for 24×36 (full frame) and Super 35 (cine-format).

5-a1. Angenieux M1 50mm f/0.95 – FullFormat 24×36.


5-a2. Angenieux M1 50mm f/0.95 – Super35.


5-b1. Carl Zeiss Jena Biotar 50mm f/1.4 – FullFormat 24×36.


5-b2. Carl Zeiss Jena Biotar 50mm f/1.4 – Cine35.


5-c1. Canon Rangefinder 50mm f/0.95 – FullFormat 24×36.


5-c2. Canon Rangefinder 50mm f/0.95 – Cine35.


Herbert Börger

Berlin, 24.12.2022

Hey Sony! Was passiert bei der Objektiv-Korrektur in meiner Sony A7Rm4 ?

Bei hochwertigen digitalen Systemkameras hat man üblicherweise die Möglichkeit, eine digitale „Objektiv-Korrektur“ zuzuschalten – für moderne Objektive, deren Eigenschaften in der Firmendatenbank des Kameraherstellers meines Vertrauens gespeichert und für das Kameramodell verfügbar sind. Dazu muss die Kamera das Objektiv-Modell erkennen und die notwendigen Korrektur-Algorithmen besitzen – oder das Objektiv könnte diese Informationen über seine Fehler in sich tragen.

Ich mchte nur generell erwähnen, dass ich in allen meinen Testberichten, in denen ich historische und moderne Objektive verglichen habe, immer die Objektiv-Korrektur ausgeschaltet habe.

Geben Sie es zu: Sie waren bisher auch so naiv, zu glauben, dass da auf wundersamem – eben digitalem! – Wege die aufgrund der bekannten Rest-Fehler der Optik fehlerhaften Bildinformationen „nachgebessert“ werden. Es entstehe bitte: DAS PERFEKTE BILD – bei Verwendung eines un-perfekten (und damit billigeren) Objektives, dessen Rest-Fehler durchaus sehr groß sein könnten – man müsste sie nur kennen …

Nachdem ich persönlich schon relativ sicher war, dass von der „Objektiv-Korrektur“ KEINE WUNDER zu erwarten sein werden, wollte ich mal nachschauen, was denn wirklich passiert. Was können wir heute von einer Objektiv-Korrektur erwarten, wobei ich das Thema erst einmal auf die 60 Megapixel-Sony-Kamera A7Rm4 beschränken muss, also einen aktuellen, hochauflösenden Sensor.

Meine Hoffnung ist, dass beim Aufbereiten der Sensor-Rohdaten diese Kamera nicht schon ohne mein Wissen die Bilddateien manipuliert, solange die Objektiv-Korrektur ausgeschaltet ist! Bei den historischen Objektiven, die ich normalerweise sehr überwiegend analysiere, besteht diese Sorge ja ohnehin nicht, da das Objektiv normalerweise nicht mit der Kamera kommunizieren kann – die Kamera aber auch sowieso nichts über mein „Ernostar“ von 1926 weiß!

Ich sollte nicht verschweigen, dass meine Motivation, diesen Bereich näher zu untersuchen dadurch plötzlich für mich höhere Priorität erlangte, dass ich versucht habe, in Dateien auf Basis des IMATEST-Test-Targets die Vignettierung mittels Photoshop zu kompensieren, um zu erfahren, welchen Einfluß die Vignettierung alleine (also der Helligkeitsabfall zum Rand) auf die Auflösungsmessung haben könnte.

Die erneute Analyse der manipulierten IMATEST-Target-Datei ergab: einen KATASTROPHALEN Einbruch der Auflösungswerte überall im Bild. Das hat mich schon sehr alarmiert!

Zufällig um dieselbe Zeit habe ich mein Referenz-Normalobjektiv (Sony Planar FE 50mm f/1.4 ZA) erneut mit IMATEST gemessen – und erreichte nicht annähernd die mir geläufigen hohen Auflösungs-Werte. Ich sellte fest, dass – durch irgendeinen Zufall – die Objektiv-Korrekturen eingeschaltet waren.

In der Folge führte ich folgendes Messprogramm durch – wobei ich das exzellente (aktuelle) Planar FE 50mm f/1.4 ZA im E-Mount (Sony) verwendete. Nach meinen umfangreichen Erfahrungen kann das verwendete Objektiv aber durchaus als Referenz dessen gelten, was in diesem Preissegment heute möglich ist.

Auflösungs-Messung (mit CA- und Verzeichnungs-Daten sowie Kantenschärfe-Messung) an der Sony Planar FE 50mm f/1.4 ZA am Imatest-Target (SFRplus):

Bild 1: Messanaordnung Mit Sony A7Rm4-Kamera und dem großen IMATEST-SFRplus-Target. Die Höhe des Targets zwischen den oberen und unteren Balken beträgt 783 mm, Der Abstand mit 50mm-Objektiv ca. 1,6 m.

Beschreibung des Messverfahrens im Detail siehe:

Fotosauriers optisches Testverfahren für Objektive mit IMATEST

Die typischen individuellen Fokussier-Unsicherheiten der (eigentlich überlegenen) Manuellen-Fokussierung wollte ich zunächst vermeiden, deshalb wählte ich Autofokus für die Schärfeeinstellung – und zwar mit Fokusfeld im Zentrum.

Die Objektiv-Korrekturen sind AUSGESCHALTET (OFF):

Bild 2: Auflösung, Kantenschärfe und Verzeichnung (IMATEST) mit Autofokus, Objektiv-Korrekturen ausgeschaltet – PLANAR 50mm f/1.4 – gegenwärtiger Stand der Technik (2018)

Anschaulicher sind die folgenden Grafiken, Auflösung (LP/PH = Linienpaare/Bildhöhe) über der Blende aufgetragen – jede Zahl ist ein Mittelwert über mehrere Messpunkte (insgesamt 46 Messpunkte bei jeder Blende über die gesamte Bildfläche verteilt):

FE 50f1,4_Autofocus_oKorr_Diagramm
Bild 3: Diagramm Auflösung (Mitte-Übergang-Ecken) des FE 50f1.4 ZA mit Autofokus

Das folgende Diagramm zeigt die Auflösung desselben Objektivs  mit EINGESCHALTETER VERZEICHNUNGS-KORREKTUR

FE 50f1,4_Autofocus_mVerzKorr_Diagramm
Bild 4: Auflösung (Mitte-Übergang-Ecken) (IMATEST) mit Autofokus, Objektiv-Korrekturen eingeschaltet – PLANAR 50mm f/1.4 – gegenwärtiger Stand der Technik (2018)

Man erkennt sofort, dass die Auflösung in der Bildmitte („Center“ – grüne Linie!) sehr stark abgesunken ist gegenüber der Messung ohne Verzeichnungskorrektur. Wenn man genau in die Rand-Auflösungswerte schaut, sieht man, dass zwischenBlende 2.8 und 8 die Auflösung auch in den Ecken und im Übergang (part way) leicht verringert ist. Außerdem ist die Kantenschärfe in der Bildmitte (Wert „Edge profile bzw. sharpness“) deutlich – nämlich ebenso um ca. 20% wie die Auflösung in Bildmitte – reduziert.

Die Aufgabe der Verzeichnungskorrektur wird dabei allerdings vorbildlich gelöst: die Verzeichnungswerte werden mit 0,03-0,07% auf bis zu ein Zehntel der ursprünglichen Verzeichnung von 0,35% abgesenkt – dann meist mit der Charakteristik „Moustache“.

Die Frage ist nur: zu welchem Preis in der Bilqualität geschieht das hier? Und ist das Objektiv damit sinnvoll verwendet. Mit Listenpreis € 1.500 erstehe ich eine 12-linsige Festbrennweite mit state-of-the-art Optik (Asphäre, Sondergläser). Da möchte ich die volle optische Leistung (schon ab Offenblende!) gerne genießen!

Die oben dargestellte Erkenntnis ist daher wohl von eher theoretischem Interesse. Eine Verzeichnung von 0,35% ist ohnehin so gering, dass sie praktisch nicht auffällt. Man solte den 12-Linser nicht „abdrosseln“ und ihm damit seine optische Potenz nehmen.

Zu der anderen angebotenen Objektiv-Korrektur, die man in der A7Rm4 einzeln zu- und ab-schalten kann, läßt sich allerdings nur Positives sagen: die CA-Korrektur beeinflusst hier die Auflösungswerte allenfalls positiv – nämlich da, wo im Rand-Ecken-Bereich der Farbfehler reduziert wird: dort steigt dann auch die Auflösung. Das Zuschalten ist also auch bei einem derart hoch-korrigierten Objektiv zu empfehlen. Die Wirkung ist auch in der Bildmitte nachweisbar.

Für dieses hier besprochene Objektiv würde ich dringend empfehlen, die Lens-Correction Funktion auszuschalten und lediglich die CA-Korrektur einzeln zuzuschalten.

Bei anderen Hochleisungs-Objektiven habe ich dasselbe überprüft und bin – glücklicherweise – ausschließlich zu anderen Ergebnissen gekommen, wie man in den folgenden Tabellen sieht. Ich habe dabei nur die Performance bei voller Öffnung dargestellt, da die Objektiv-Korrektur da typischerweise am stärksten eingreift.

Hier drei Beispiele mit drei der aktuellsten hochklassigen Optiken mit 40 mm Brennweite ebenfalls an der Sony A7R4:

Bild 5: Auflösung, Verzeichnung und CA bei voller Öffnung am Batis 40mm f/2.0 – ohne und mit Lens-Correction – Quelle: fotosaurier
Sony FE40f2,5 - with:without-Correct_openApert
Bild 6: Auflösung, Verzeichnung und CA bei voller Öffnung am Sony FE 40mm f/2.5 – ohne und mit Lens-Correction – Quelle: fotosaurier
Bild 7: Auflösung, Verzeichnung und CA bei voller Öffnung am SigmaArt 40mm f/1,4 – ohne und mit Lens-Correction – Quelle: fotosaurier

Diese drei Beispiele nähren bei mir die Hoffnung, dass die Situation beim Planar 50mm f/1.4 eine Ausnahme sein könnte. In allen drei Fällen zeigt sich grundsätzlich sowohl eine Verbesserung der Verzeichnung als auch der Auflösung, die vermutlich unmittelbar auf die nachträgliche Korrektur der Chromatischen Aberration zurück geht.

Herbert Börger

Der Brandenburger Tor, Berlin, 11. Dezember 2022

„Überflieger“ auf Kollisionskurs

… gemeint sind damit hier keine Wesen, die über-schlau jedem Alltags-Maßstab ent-eilen, sondern die Objekte, mit denen man einen guten Teil vieler Tages verbringt, wenn man in der Einflug-Schneise eines größeren Flughafens wohnt.

Ich beschwere mich nicht – irgendwo müssen sie ja fliegen – und es besteht die Hoffnung darauf, dass sie noch erheblich viel leiser werden und auch die Zeiten der 19,95-Euro-Sitzplätze irgendwann enden werden, wenn es notwendig werden sollte, ALLE Kosten denen aufzubürden, die sie verursachen/verantworten.

Bis es so weit ist, werde ich aber auch nicht versuchen, den Feind zu lieben oder durch eine innige Umarmung unschädlich zu machen – will sagen: zum PLANE-SPOTTING wird es bei mir nicht kommen.

Allerdings „spiele“ ich manchmal mit den wohl-bekannten Flug-Objekten – dann nämlich, wenn sich eine meiner Liebhabereien – die Astronomie – damit verbinden läßt!

Das Spiel besteht hier darin, landende Flugzeuge mit dem Mond scheinbar kollidieren zu lassen! An meinem Wohnort befinden sich die landenden Maschinen in ca. 800 Metern Höhe. Das ist relativ passend, da die Maschinen im Tele da schon relativ groß erscheinen – aber nicht zu groß, denn dann würde der Mond winzig neben dem Flugzeug erscheinen. Ideal wären wahrscheinlich1.000 – 1.500 Meter Höhe. Aber diese Gedanken habe ich mir anfangs gar nicht gemacht:  mir fiel die Kollisions-Situation  sozusagen zufällig in den Schoß … und ich habe einfach abgedrückt – wie folgend zu sehen:

Mir war nachmittags schon aufgefallen, dass die landenden Maschinen die Bahn des Mondes  kreuzten. Der Mond stand bei wolkenlosem Himmel im Südwesten gegen Untergang und ich habe dann gewartet, bis der Kontrast der Mondscheibe zum Himmel größer wurde – aber die Flugzeuge von der Sonne noch gut beleutet waren.

Fig. 1: Viertelmond (erstes Viertel) am 20. April 2021 – 250 mm-Teleobjektiv an Fuji GF100 – frei Hand 1/1300 s. Die formatfüllende Bildhöhe ist hier 850 Pixel (0,5 Grad am Himmel). Bildkontrast nachträglich leicht angehoben. Quelle: fotosaurier

Der Mond steht hier 7 Tage vor „Supervollmond“, der am 27.4.21 eintreten würde im ersten Viertel – also ziemlich nahe am Perigäum und erscheint daher ziemlich groß.

Ausrüstung: ich habe die GFX100 mit 100 MP auf dem Format 33mm x 44mm benutzt – mit dem 250mm f/4 Teleobjektiv mit OIS. Dessen DIAGONALER Bildwinkel ist 12° – der Durchmesser des Mondes entspricht etwa 0,5°.

Erster Versuch:

Fig. 2: Erster Versuch … DANEBEN! Dies bild zeigt den vollen Ausschnitt des 250er Teles an der Fujifilm GFX100 und die natürlichen Helligkeits- und Kontrastverhältnisse. Optischer IS + IBIS ! Schärfe auf dem Mond. Quelle: fotosaurier

Ich hätte noch die Option gehabt, den 1,4-fach-Teleconverter und den Kleinbild-Ausschnitt auf dem Sensor zu verwenden. Damit hätte ich eine weitere 1,75-fache Vergrößerung erzielt. Von der Bildwirkung wäre das eindrucksvoller gesesen – allerdings hätte ich dann vielleich am Anfang gleich so große Probleme bekommen, Flugzeug und Mond gleichzeitig einzufangen, dass ich möglicherweise entnervt hingeworfen hätte (das Projekt – nicht die Kamera!).

Sofort werden mir die ersten Probleme der Umsetzung des Spiels bewusst:

Erstens: Stellt man auf das Flugzeug oder den Mond scharf?

Auf diesem Bild 2 hatte ich auf den Mond scharf gestellt. Das Flugzeug zeigt – trotz Image Stabilizers – hier eine leichte Bewegungsunschärfe in der 100%-Ansicht:

Fig. 3: 100%-Ansicht des Flugzeuges aus Bild 2. Quelle: fotosaurier

Die Alternative – auf das Flugzeug scharf gestellt – auch weit daneben:

Fig. 4: Auch daneben – aber auf das Flugzeug scharf gestellt. Quelle: fotosaurier

Das Flugzeug ist jetzt knack-scharf in 100%-Ansicht, wie es sich für einen optischen Image Stabilizer gehört – aber was ist das da unten hinter dem Flieger?

Fig. 5: Brutal deformierter Mond aus dem Bild 4. Die Ursache ist IBIS! Quelle: fotosaurier

Die Fujifilm GFX100 besitzt ein „In-Body-Image-Stabilizer“ (IBIS)-System, das den Sensor bei Bewegung und Erschütterung der Kamera nachführen soll. Es arbeitet auch gleichzeitig zusammen mit dem „Optischen-Image-Stabilizer“ (OIS)-System des Objektives.

Hier hat der OIS des Objektivs (mit kleiner Wirk-Amplitude) offensichlich das Flugzeug scharf auf den Sensor gebannt – während die Kamera den Sensor mit IBIS (große Korrektur-Amplitude!) der Bewegung des Flugzeuges nachgeführt hat – wobei das Bild des Mondes nicht etwa bewegungsunscharf und verwischt entsteht sondern „gestreckt“ in die Bewegungsrichtung des Flugzeuges – aber ebenfalls scharf!

Was für eine Kamera! Allerdings ist der „verbeulte“ Mond nicht gerade das, was ich bildlich anstrebte. Folglich fällt die Entscheidung zu: Schärfe auf den Mond setzen!

Zum Test der beiden anderen Optionen – a) nur mit OIS des Objektivs, b) nur mit IBIS der Kamera – blieb mir nicht die Zeit, wenn ich noch Treffer erzielen wollte, denn die Sonne sank unaufhaltsam Richtung Horizont.

Zweitens: Wie bringe ich Flugzeug und Mond „eng“ genug zusammen, damit man den Eindruck einer „Kollision“ erhält?

Der Mond hat einen scheinbaren Durchmesser von 0,5° (in Erdnähe = „Perigäum“ etwas mehr) – das Flugzeug hat in der Richtung quer zur Fortbewegung zwischen 1,5° und 3° Bildwinkelabdeckung – je nach Winkel unter dem die Maschine erscheint.

Die Versuche zeigten sehr bald, dass das Problem darin lag, dass die Flugzeuge bei der Landung zwar auf einem Leitstrahl geführt werden, der aber bedeutende seitliche Abweichungen zuläßt. Der Einsatz eines Stativs war damit auszuschließen. Man muß den Anflug der Maschine beobachten und dann seine eigene Position vorausschauend korrigieren, so dass das Zusammentreffen von Flugzeug und Mond in einem „Punkt“  möglich wird. Das erfordert Übung – es ist grenzwertig!

Vorausschauend hat man auf den Mond fokussiert und wartet mit dem Mond im Sucher darauf, dass das  (wirklich schnelle!) Flugzeug erscheint. Bei 12° Diagonal-Bildwinkel ist das schon ambitioniert, genau im richtigen Moment auszulösen, damit die Objekte auf ca. 1° genau in Beziehung stehen. Ein „ideales Bild“ ist mir so an diesem Tag nicht gelungen.

Halbwegs zielführende Ergebnisse waren:

Diese „Kollision“ des Mondes mit dem Leitwerk einer Lufthansamaschine, wobei das Bild des Mondes durch den turbulenten Abgasstrahl der Turbine verwischt ist;

Fig. 6: „Kollision mit dem Leitwerk … nicht besonders eindrucksvoll … Quelle: fotosaurier

Eine Überflug-Konstellation einer Austrian-Maschine, bei der der Mond entsprechend scharf abgebildet ist und der Abgasstrahl der Turbine einen schmalen Bereich darauf verwischt;

Fig 7: Meine beste „Passage“ an diesem Tag … der unter den Bauch des Austrian-Flugzeuges geschriebene Gruß „Servus“ musste im Schatten absaufen, damit der Mond auch durchgezeichnet erscheint. Quelle: fotosaurier

Und dieser letzte Vorbeiflug eines deutschen Luftwaffen-Airbusses in den letzten direkten Sonnenstrahlen des Abends – die Maschine kam etwas tiefer als erwartet ins Bild:

Fig 8: 0,5 Sekunden früher hätte die Flügelspitze den Mond „erwischt“. Quelle: fotosaurier

Aus der zufällig beobachteten Überkreuzung der Mondbahn mit der Einflugsroute am „BER“ resultierte kein perfektes Ergebnis der Bild-Idee „Kollision Mond mit Flugzeug“ – aber die Erkenntnis, wie überraschend komplex und schwierig selbst diese einfach erscheinende fotografische Aufgabenstellung in der Umsetzung ist.

Dabei kann man dem Thema selbst noch eine riesige Spannweite mit dem Größenverhältnis Flugzeug/Mond verleihen: von einer kleinen Mondkugel, die dem Flugzeug „auf der Nase tanzt“, bis hin zu einer (Voll-)Mondscheibe vor der das Flugzeug als kleiner Schatten vorbei fliegt. (Ein solches letzteres Bild ist wohl nur durch glücklichen Zufall plus Geduld zu ergattern – habe so etwas schon veröffentlicht gesehen und auch mir selbst ist es am Fernrohr bereits passiert, dass ein Flugzeug – unerwartet – über die Mondscheibe flog!)

Die Variable ist in diesem Falle nicht etwa die Brennweite des Objektivs, sondern einzig und alleine die Flughöhe des Flugzeugs – und natürlich auch noch die Größe des Flugzeugs!

  1. Sinnvolle Flughöhen (bzw. Abstände) für eine „Kollisions-Illusion“ liegen nach meinen Erkenntnissen zwischen 500 m und 1.500 m.
  2. Der Himmel sollte weitestgehend längere Zeit wolkenlos sein!
  3. Da der Mond im Laufe des Monats ziemlich schnell um 360° über unseren Himmel zieht (ist ja die Definition unseres MONats!), ist sein Aufenthalt zur richtigen Tageszeit auf der Einflugbahn der Flugzeuge ziemlich selten – man kann das für einen Standort aber durchaus aus den astronomischen Daten vorplanen – wobei dann noch das richtige Wetter und der Landeflugbetrieb passen müsste, wobei der letztere auch wieder Windrichtungsabhängig ist!
  4. Bei Flugzeug-Startbetrieb halte ich die Aufgabe für nochmals deutlich schwieriger, da die Flugzeuge dann sehr schnell an Höhe gewinnen und dabei auch je nach geplanter Abflugrichtung oft schon im Steigflug wegdrehen!

Angesichts der Vielzahl der Variablen tippe ich darauf, dass ich da in diesem Jahr nicht noch einmal „zum Schuss“ kommen werde. Als ich die oben gezeigten Bilder machte, war ich mir ehrlich gesagt noch nicht bewusst, welcher Zufall sich da gerade ereignete …

Berlin, 24. August 2021

Herbert Börger – fotosaurier




ROBOT – Wer hatte die Idee? Kilfitt oder Berning? Zwei Ahnenforscher kommen gemeinsam zu neuen Erkenntnissen …

von Herbert Börger und Jürgen Bahr, im April, 2021

ZUSAMMENFASSUNG und NACHTRAG eingefügt am 19. Mai 2021

Wir haben eine etwas langatmige Erzählform (einen Dialog) für unsere Recherchen zum Thema gewählt. Deswegen ist es sicher sinnvoll hier eine kurze ZUSAMMENFASSUNG voran zu schicken (wir danken dem einen ungeduldigen Leser, der uns auf den Mangel hinwies – den wir hiermit versuchen zu beseitigen!):

Es gibt zu wenige völlig sichere primäre Quellen zu dem Thema, um die Frage „Kilfitt oder Berning“ mit absolut letzter Sicherheit zu entscheiden. Aber: wir haben systematisch alle verfügbaren Quellen analysiert und sind zu dem Schluss gekommen,

dass mit an Sicherheit grenzender Wahrscheinlichkeit Heinz Kilfitt bereits den integrierten Federmotor in seiner Kamera vorgesehen hatte, als er mit H.-H. Berning zusammen traf.

Dabei handelt es sich sozusagen um einen „Indizienbeweis“.

„Der Robot“ – die Kultkamera der 1930er und 1940-60er Jahre, die sogar noch bis 2001 gebaut wurde und als Prinzip bis heute in anderem technischen Gewand fortlebt: als Verkehrs- oder Banken- bzw. Raumüberwachungs-System (heute Teil von Jenoptik).

Fig. 1: aus dem Berning-Familienalbum – Bild und Text zeigen in den frühen 50er Jahren den ersten Einsatz eines Robot in einem Polizeiwagen für die Jagd nach Geschwindigkeits-Sündern! – Quelle: freundlicherweise zur Verfügung gestellt von Jürgen Bahr.

Für alle, denen der Name der Kamera („Der Robot“) nichts sagt: es war die erste im Kameragehäuse „motorisierte“ Kleinbildkamera (Format 24mm x 24mm) die ein tüftelnder (gelernter!) Uhrmacher namens Heinz Kilfitt unmittelbar nach dem Erscheinen der Leica (ab 1926) erdacht und manuell bis zum Prototypen 1931 realisiert hatte. Die Kamera konnte schließlich ab 1935 tatsächlich in großen Stückzahlen geliefert werden. Wenn Sie jetzt 9 Jahre von der Idee zum lieferfertigen Produkt lange finden: Barnack hatte für die Leica 12 Jahre gebraucht!

Die Geschichte der Entstehung dieser Kamera wurde mehrfach erzählt (siehe Literaturhinweise) und basiert grundlegend darauf, dass der „Tüftler“ Kilfitt einen Fabrikantensohn mit mittlerer Reife namens Hans-Heinrich Berning traf, der in der Idee dieser Kamera seine Erfüllung als Unternehmer fand und deswegen nicht zum Playboy werden musste …

Wie um alle derartige Kult-Artikel mit starker Fan-Gemeinde rankten und ranken sich Legenden und Histörchen um die Erfinder und Macher.

Eine der hervorstechendsten Legenden war beim „ROBOT“ jene, dass Heinz Kilfitt die Kamera zwar grundlegend konstruiert hatte, der Unternehmer H.-H. Berning aber die Idee für den Federmotor gehabt haben soll, der ja das eigentliche Unterscheidungs- und Erfolgsmerkmal dieser Kamera gegenüber anderen Kameras war.

Diese Legende ist das Thema dieses Artikels.

Es wird hier ein sehr „spezielles“ Thema im Zusammenhang mit einer großartigen und erfolgreichen Kameraentwicklung besprochen: hatte der Kamerakonstrukteur Kilfitt die (ursprüngliche) Idee für den Federmotor-Antrieb in der ROBOT-Kamera – oder war das sein Geschäftspartner, Geldgeber und zukünftiger ROBOT-Unternehmer H.-H. Berning? Verschiedene Quellen behaupten ausdrücklich das eine oder das andere.

Das klingt jetzt sehr engstirnig – vor dem Hintergrund einer darauf folgenden 85-jährigen erfolgreichen Unternehmens-Geschichte (bis heute).

Wenn man allerdings bedenkt, dass genau diese Eigenschaft als erste Kleinbildkamera mit integriertem Motorantrieb ihren nachhaltigen Erfolg ausmachte, ist der Punkt schon etwas prominenter.


Vorgeschichte, erzählt von Herbert Börger: Am 30. April 2018 wies mich mein heutiger Co-Autor Jürgen Bahr in dem von uns beiden genutzten Ahnenforschungs-Portal darauf hin, dass in meinem Stammbaum das Datum einer Person, die wir beide in unseren Stammbäumen führen, fehlerhaft sei. Aus der Tatsache, dass wir diese EINE Person BEIDE  im Stammbaum haben, folgte sogleich der logische Schluss, dass wir IRGENDWIE verwandt sein müssten. Wir telefonierten kurzerhand miteinander und versprachen uns Aufklärung. Das Gespräch war sehr lebhaft und wir kamen auf unser Leben zu sprechen. Ich erwähnte, dass ich mich intensiv mit Fotografie und Technik befasse. Darauf erwähnte Jürgen Bahr, dass er mit der Gründer-Familie der ROBOT-Herstellerfirma verwandt sei. Es machte da noch nicht „Klick“ in meinem fotoaffinen Synapsen – aber es blieb hängen. (Ich steckte damals gerade sehr tief in meiner Angénieux-Forschungsphase.)

Wie es im Leben oft geht: trotz großem Interesse aneinander trat eine längere Kommunikationspause ein. Bis zu dem Zeitpunkt, als ich in meine „Kilfitt-Forschungsphase“ eintrat – und da machte es mit Verzögerung sehr heftig „Klick“: was hatte Jürgen Bahr da erzählt? Die ab 1934/35 als ROBOT an den Markt gebrachte Kamera hatte doch Heinz Kilfitt entwickelt! Sozusagen das erste Gesellenstück des begnadeten Konstrukteurs!  Im Dezember 2020 nahm ich den Kontakt spontan wieder auf – räumlich behindert durch die COVID-19-Pandemie, denn sonst hätten wir uns sicher sofort getroffen – wir sind ja beide Ruheständler.

Es stellte sich heraus: Jürgen Bahr ist der Schwiegersohn des ROBOT-Gründers Hans-Heinrich Berning (H.-H.B.) – seine Frau war die älteste Tochter des erfolgreichen Unternehmers, der die von Heinz Kilfitt (H.K.) erfundene Kamera mit dem legendären Federwerk-Motor (für Verschluss-Spannung und Filmtransport) Markt- und Produktions-reif machte und bis in die 1960er Jahre das Unternehmen dahin entwickelte, dass es auch nach seinem Ausscheiden und durch die Phase des „Zusammenbruchs“ der westdeutschen Kameraindustrie um 1970 herum nachhaltig und erfolgreich Bestand hatte – bis heute. (Worin sich mir übrigens eine starke Analogie zum Unternehmer Pierre Angénieux aufdrängte – und ja: beide Firmen sind heute immer noch erfolgreiche und eigenständige Abteilungen in großen Konzernen!).

Die Eigenschaften des Produkts, die Entwicklung der ROBOT-Kameras, die unglaublich breite Modellpalette und der Weg des Unternehmens ist ausführlich und detailliert dokumentiert in Büchern, Zeitschriftenartikeln, Websites etc. Da besteht für Informationshungrige wirklich kein Mangel.

Mir fiel allerdings bei meinen detaillierten Recherchen auf, dass es gegensätzliche Darstellungen in einem ganz besonders wichtigen Punkt gibt:

Folgt man den Darstellungen der „Kilfitt-Seite“ (z.B. das Kilfitt-Buch von PONT oder der 75-Jahre Jubiläums-Firmenschrift der Firma robot visual systems) so bestand Kilfitts Erfindungsleistung im vollständigen Kamerakonzept der Kleinbildkamera mit allen wichtigen Merkmalen einschließlich Federmotorantrieb – auch wenn unbestritten ist, dass der Prototyp, den Heinz Kilfitt bis 1931/32 erstellt hatte, tatsächlich den Federmotor noch nicht enthielt. (… und nicht einmal das auf der Leipziger Messe 1934 vorgestellte Vorserienmodell enthielt das Federwerk!)

Fig. 2a: Der Ur-Robot – und tatsächlich hier mit dem Federmotor ab 1935 geliefert. Später wurde er dann zur Unterscheidung „ROBOT I“ genannt. Eine solche Bezeichnung findet sich auf diesen Kameras natürlich nicht – Quelle: fotosaurier – Repro eines Firmenprospektes
Einige Fotos von HHB - Robot-Doppelportrait
Fig 2b: Der ROBOT II (Blitzkontakt auf Vorderseite und geänderter Sucher – nicht schwenkbar) mit zwei verschiedenen Standardobjektiven – Quelle: Archiv-Bild im Besitz von Jürgen Bahr

Folgt man der ROBOT-Berning-Seite (z.B. dem Buch von Hans Grahner oder der ROBOT-Website von Michael Ensel und anderen) so hatte H.K. nur die Basis-Kleinbildkamera erfunden und als die beiden (Kilfitt/Berning) 1932 zusammen kamen, soll H.-H.B. die entscheidende Idee des Filmtransportes mittels Federmotor beigetragen haben.

Allerdings ist die Darstellung auf der Kilfitt-Seite der Website widersprüchlich. Dort steht wörtlich in aufeinanderfolgenden Sätzen Folgendes:

(Zitat) „Das Kleinbildformat hatte neue Möglichkeiten eröffnet, mit einer Uhrwerkkamera – so Kilfitts Überlegung – könnten Aufnahmen in ausgesprochen dynamischem Stil gemacht werden. Die Idee für den Robot war geboren. (Absatz) Mit Hilfe von H.H. Berning, der Geld und die Idee mit einem Federwerkmotor beisteuerte, wie schon in der Geschichte zum Robot näher erläutert, gelang Kilfitt die Entwicklung seiner automatischen Kleinbildkamera im Format 24×24 mm …“

Hier stoßen also die Gegensätze schon innerhalb einer einzelnen Quelle aufeinander.

Das Problem ist: trotz intensivster Suche vieler kluger Köpfe war bisher keine primäre Quelle zu diesem Thema gefunden worden – nur Behauptungen, indirekte Zitate und Meinungen.

Mich als Ingenieur und ehemaligen Unternehmer störte sehr bald, dass die Hypothese der Berning-Idee für das Federwerk unlogisch erschien – aber dazu später.

Der Leser kann sich sicher vorstellen, dass das Treffen eines Familienmitgliedes des Unternehmers H.-H.B. in Person von Jürgen Bahr in mir Hoffnung aufkeimen ließ … findet sich die Primär-Quelle doch noch, mit der die Frage endgültig entschieden werden kann?

Der Dialog zu dem Thema zwischen uns beiden fand pandemiebedingt per e-Mail-Austausch statt. Diesen weitläufigen Austausch von Informationen, Dokumenten und Recherche-Ergebnissen haben mein Co-Autor Jürgen Bahr („JB„) und ich („HB„) hier gemeinsam in ein „virtuelles Gespräch“ zusammengefasst. Die Inhalte des Dialogs sind authentisch – allerdings liegen zwischen den einzelnen Teilen des Dialogs in Wirklichkeit oft mehrere Wochen der Recherche und des Studiums von Unterlagen.

„Wer hatte die Idee?“ – ein Dialog.

HB: Lieber Herr Bahr, ich bin auf der Suche nach primären Informationen zu der Frage, wer hatte die Idee zum fest in das Gehäuse integrierten Federmotor bei der Entwicklung der „ROBOT“-Kamera? In der Literatur ist das Thema umstritten. Sie sind ein Schwiegersohn von Hans-Heinrich Berning. Was hat man darüber in der Familie erzählt? Kann es irgendwo noch Original-Unterlagen geben, aus denen hervorgeht, wie es tatsächlich war? Was wurde in der Familie Berning über Heinz Kilfitt erzählt?

JB: Meine Frau, Eva-Maria Berning, wurde geboren ein Jahr nach dem Beginn der Zusammenarbeit zwischen HHB, wie ihr Vater in der Familie genannt wurde, und Herrn Kilfitt. der ja die Firma wieder verließ als sie fünf Jahre alt war. Das ist keine gute Voraussetzung für persönliche Erinnerungen zu Firmenangelegenheiten. Leider ist meine Frau schon 2016 verstorben. Auch der einzige Berning-Sohn, Peter Hans-Heinrich Berning ist nun gerade in 2020 auch gestorben. Er war Ingenieur und der Einzige, der nach dem Verkauf der Firma (1963/64) noch eine Zeit lang in der Firma gearbeitet hatte.

Als die Firma nach dem Krieg (1946/47) praktisch aus dem Nichts wieder aufgebaut wurde, war meine Frau ein Teenager – die Menschen hatten andere Sorgen, als längst überholte Vorkriegsgeschichten zu besprechen: man blickte nach vorne! Und das waren ja fast abenteuerliche Verhältnisse, in der alliiert verwalteten Tri-Zone – es gab keinen „Deutschen Staat“ – eine Firma wieder aufzubauen. Seit 1941 war fast nur noch für die deutsche Luftwaffe gefertigt worden (Kameras, die in Jagdflugzeuge und Bomber eingebaut wurden um die Einsatzerfolge zu dokumentieren). Die gesamte Fertigung war aus dem von den Bombardierungen bedroten Rheinland in die Oberlausitz bei Zittau verlegt worden. Restbestände der Luftwaffen-RoBoT’s waren zunächst das einzige, was man hatte. Die Fertigungsmaschinen waren in den Wirren des Kriegsendes verloren gegangen. Dennoch gelang bereits 1947 ein Neustart der Fertigung – unter anderem, weil die Firmengebäude in Düsseldorf (ohne die Maschinen) wenig beschädigt waren. Wer blickt in dieser Situation zurück?

Die Firma strebte schnell auf große Erfolge zu – das folgende Bild zeigt die gute Stimmung dabei Anfang der 1950er Jahre:

Bundespräsident Heuss -Fotokina 1952 bei RoBoT Kopie
Fig. 3: Bundespräsident Theodor Heuss besucht den ROBOT-Photokina-Stand (Aufnahme wahrscheinlich am 4. April 1954 entstanden) – auf dem Bild links von Heuss: H.-H. Berning, der seiner Tochter Eva-Maria (der späteren Ehefrau von Jürgen Bahr) die Hand auf die Schulter legt. – Quelle: Originalfoto im Besitz von Jürgen Bahr (mit freundlicher Genehmigung)

Von meiner Frau (Eva-Maria Berning) und meiner Schwiegermutter wurde – wenn sich das Gespräch über RoBoT entwickelteüber Herrn Kilfitt in der Familie nie gesprochen. Es ist meines Wissens heute niemand mehr da, den man diesbezüglich als Zeitzeugen fragen könnte. Interessant finde ich auch, dass nach Sichtung von Fotos aus der Gründungszeit der Firma, Herr Kilfitt nicht auf einem einzigen Foto zu endecken ist. Er schwebt sozusagen wie ein Geist darüber.

Die überlieferten Aussprüche aus der Familie bewegten sich meist in einem gewissen „anekdotischen“ Rahmen – wie zum Beispiel HHB’s Lieblings-Spruch: „Der „RoBoTist die einzige männliche Kamera der Welt“ – das scheint zu stimmen, ist aber relevant und vermittelbar nur in der deutschen Sprache, also der Sprache in der „die Kamera“ weiblich und „der Roboter“ männlich ist – im angelsächsischen Sprachraum sind die alle sächlich … und damit etwas umständlich zu vermitteln.

Ich habe mich immer sehr für Robot interessiert und auch Kontakte zu den Robot-Sammlern und -Forschern gepflegt. Aber letztlich bin ich davon ausgegangen, dass die bei den Herren Hans Grahner, Dr. Beltermann und Peter Lausch beschriebene Version – nämlich dass mein Schwiegervater die entscheidende Idee beigetragen haben soll – stimmt.

HB: Damit haben Sie meiner ursprünglichen Hoffnung auf neue Quellen nun einen sehr schnellen Garaus bereitet. Gibt es irgendwo noch Dokumente, die man heranziehen könnte – haben Sie Kontakte zu der heutigen Nachfolgefirma?

JB: Nachdem mein Schwiegervater die Firma verkauft hatte (1963/64) ging das Unternehmen ja 35 Jahre lang durch mehrere Zwischenbesitzer-Hände, ehe es 1999 im Jenoptik-Konzern landete. Die Archive sind irgendwann vernichtet worden – oder eben immer ein Stück mehr untergegangen. Das hat man versucht zu erforschen. Es soll nichts mehr da sein.

Meine Frau und ich – und auch noch andere Familienmitglieder (unter anderen ihre jüngste Schwester Veronika nebst Ehemann sowie einer meiner Söhne) – waren zur 75-Jahr-Feier der Firma Robot (nunmehr Tochter-Firma von Jenoptik in Monheim am Rhein) eingeladen. Das war unser letzter Kontakt. Meine Frau wurde da im Laufe der Feier über Ihre Erinnerungen an die Firma befragt. Vielleicht gibt es darüber noch eine Aufzeichnung bei der Firma?

Im Jahr 2002 tauchten bei der Auflösung von Räumen der OBECO ( moderne Kurzfassung des früheren Firmen-Namens „Otto-Berning & Co.“ des Vaters von HHB und Großvaters meiner Frau) einige Unterlagen aus der Anfangszeit der Robot-Firma auf. Die habe ich hier und will diese gerne einmal sichten.

Was veranlasst Sie denn, an der Geschichte mit der Federwerks-Idee zu zweifeln?

HB: Ich bin Physiker und Ingenieur. Zweifeln – sogar an eigenen Erkenntnissen – ist unsere zweite Natur in diesem Berufsfeld. Man braucht Beweise. Erschwerend ist hier die Lage: die Geschichte erscheint mir nicht logisch:

Wenn Sie ein gelernter Uhrmacher wären (wie es Herr Kilfitt war – und schon sein Vater war Uhrmacher!) – bräuchten Sie dann einen technisch nicht ausgebildeten Laien, der Sie auf die Idee bringt, dass ein FEDERWERK ein technisches Gerät antreiben könnte? Klar: es ist nicht ausgeschlossen, dass Berning der war, der auf diese Idee kam – aber es erscheint nicht besonders wahrscheinlich.

Ich liste hier kurz die Reihe der Fakten auf, aufgrund derer es mir unwahrscheinlich vorkommt, dass die Federwerks-Idee ursprünglich von Berning beziehungsweise NICHT von Kilfitt stammte:

  1. Die eben genannte Tatsache, dass Kilfitt gelernter Uhrmacher war … alle Uhren jener Zeit wurden von Federwerken angetrieben. Fünf Jahre hatte er alleine an der Kamera getüftelt.
  2. Bekannt und nicht bestritten ist, dass das Merkmal „Schnelligkeit“ bei seiner angestrebten Erfindung von Anfang an ganz im Vordergrund stand. Auch wurde schon ganz am Anfang der Begriff „automatisch“ verwendet – und die Belichtungsautomatik konnte damals noch nicht gemeint gewesen sein.
  3. Kilfitt arbeitete vor dem Kontakt zu Berning in einer Firma in Berlin, in der Fotoapparate, aber auch Filmkameras verkauft wurden, während das Medium Film geradezu einen Boom erlebte – auch Barnacks Leica war bei der Wahl des 35mm-Filmmateriales ja von den verfügbaren Film-Grundmaterialien (Meterware) ausgegangen. Die dort zu erwartenden riesigen Produktions-Mengen verhießen ein günstiges Filmmaterial für die Kleinbildkamera. Kilfitt ging aber mehrere Schritte weiter: Er verwendete für seinen 1931er Prototypen einen Verschluss-Typ, wie er für Filmkameras eingesetzt wurde: den Rotationsverschluss. Alle Filmkameras jener Zeit (nachdem niemand mehr die Handkurbel drehen mochte …) hatten aber als Antrieb des Filmstreifens einen FEDERMOTOR. Es liegt mehr als nahe, dass der bei Kilfitt auch VORGESEHEN war. Vor allem aber hatte der Prototyp auch schon die sehr komplizierte mechanische Steuerung für einen „Freilauf“ des Filmbandes beim Weitertransport fast ohne Reibung. Das hätte man für einen Weitertransport des Filmes von Hand bekanntlich nicht gebraucht. Auch war die Koppelung von Weitertransport und Verschluss-Aufzug schon detailliert vorgesehen, was zu diesem Zeitpunkt (vor 1931) noch nicht bei allen Fotoapparaten selbstverständlich war.
  4. Stellen wir uns das Zusammentreffen der beiden Männer H.-H. Berning und Heinz Kilfitt vor: Berning war von Kilfitts Idee so begeistert, dass er auch Vater (Otto) und Onkel (Hermann – der gleichzeitig sein Schwiegervater war) leicht von dem Projekt überzeugen konnte – das waren gestandene Geschäftsleute, die sicher nicht die Angewohnheit hatten, ihr Geld für Spinnereien in einer Branche, die ihnen fremd war, aus dem Fenster zu werfen. Was hätte an einer Kamera, an der im Grunde gegenüber der Konkurrenz nur etwas WEGGELASSEN war – kein Entfernungsmesser, kein Quer- und Hoch-Format (gut: etwas kompakter war der Apparat) so begeisternd sein können, dass ein sehr junger Mann ohne Fachkenntnisse sein Schicksal und ein rheinländischer Geschäftsmann sein Geld hinein steckt? Das kann ich mir nicht vorstellen.
  5. Last but not least: tatsächlich war Kilfitts Prototyp als Kleinbildkamera im Vergleich sehr kompakt – und wenn man den Prototyp von 1931 mit dem „ROBOT I“ (der damals natürlich nur ROBOT hieß …) mit dem Federmotor darin vergleicht, haben diese Kameragehäuse exakt die gleichen Dimensionen. Ich kann mir schwer vorstellen, dass es gelingen konnte in einem ohnehin schon zierlichen Gehäuse NACHTRÄGLICH einen – auch tatsächlich anforderungsgerechten – Federmotor (samt ergonomisch funktionsgerechtem Aufzugsrad!) zu integrieren, ohne einen Millimeter mehr in Länge-Höhe-Breite zu brauchen. Diesen letzten Punkt führt auch besonders P.-H. Pont in seinem Kilfitt-Buch an.

Ehrlich gesagt habe ich mich schon sehr amüsiert, wie hier das Klischee so zutraf, wie man es im Allgemeinen erwarten würde:

Die „ROBOT/Berning-Fraktion“ (Sammler, Forscher und auch die Wikipedia-Berning-Seite) vertritt die Legende der Berning-Erfindung beim Federmotor; die „Kilfitt-Fraktion“ (Sammler, Forscher und Autoren) vertritt den Standpunkt der Kilfitt-Gesamterfindung.

Während es im Web unterschiedliche Lesarten dazu gibt, hat HHB’s  jüngste Tochter Veronika in ihrer privatschriftlichen Familien-Chronik über die Entstehung der Firma RoBoT dieses Detail nicht erwähnt.

Ich finde das so wunderbar exemplarisch, dass es mich reizt nachzusehen, ob man das grundsätzlich klären könnte. Da keimte mit einem Kontak zur Unternehmer-Familie natürlich Hoffnung auf.

Herr Bahr, was hat man denn in der Familie zu dem Punkt erzählt?

JB: In der Familie galt wohl weitgehend die Auffassung, dass die Federwerks-Idee von HHB stammte – vielleicht war das auch von den Sammler-Forschern beeinflusst. Und man hörte es wahrscheinlich auch gerne. Warum sollte man das hinterfragen – klingt doch schön aus Sicht der Nachfahren! Ich kann mich aber an keine einzige familieninterne Aussage erinnern, dass HHB tatsächlich irgendwann gesagt haben soll, dass in Wahrheit ER die Idee mit dem Federmotor hatte.

HB: Da wir offensichtlich bisher noch keine Primär-Quelle zu dieser Frage besitzen, werde ich mich jetzt erst einmal auf die Kilfitt/Berning-Patente zum ROBOT konzentrieren: das sind schließlich per se Primär-Dokumente, die sich nicht nachträglich manipulieren lassen. Das Patentwesen ist in Europa schließlich seit über 150 Jahren sehr wohl geordnet und dokumentiert. Ich habe da auch genug Erfahrung, um das selbst recherchieren zu können und bin gespannt, ob wir daraus etwas schließen können.

Es wäre schön, wenn Sie an den im Jahr 2002 aufgetauchten Dokumenten dran bleiben könnten.

SCHNITT – so wurde es dann gemacht: beide Autoren haben erst einmal ihre Recherche-Hausaufgaben gemacht.

Fig 4: Pause beim Recherchieren der ROBOT-Unterlagen – Quelle: fotosaurier

Gut sechs Wochen später schickte ich Jürgen Bahr das Ergebnis meiner Patentrecherche zu, zunächst zusammenfassend in Form einer Tabelle:

Fig. 5: Alle Kilfitt/Berning-Patente laut DEPATISnet, die sich zwischen 1931 und 1938 auf den ROBOT bezogen haben. In den Spalten Erfinder und Anmelder habe ich strikt die Angaben aus der dortigen Bibliographie verwendet – source: fotosaurier

Und so ging der Autoren-Dialog weiter:

HB: Hallo, Herr Bahr. Ich habe meine Patentrecherche abgeschlossen. Dazu habe ich mich des digitalen Deutschen Patent-Portals „DEPATISnet“, des Europäischen „espacenet“ und auch direkt der nationalen „Canadian Patent Database“ bedient. Dabei habe ich sowohl alle Berning-Patente als auch alle Kilfitt-Patente gesichtet, die sich von 1931 bis 1938 (Ausscheiden von Kilfitt aus der Firma Berning) auf die Kamera bezogen haben. Die Tabelle habe ich Ihnen inzwischen zugeschickt.

JB: Das habe ich mir angesehen und ich habe eine Frage: warum sind bei den englischen Patentanmeldungen keine Erfinder genannt?

HB: Das liegt offensichtlich an dem – zumindest damaligen – britischen Patentsystem, das meines Wissens erst ab 1977 international harmonisiert wurde. Kilfitt selbst ist in der Bibliographie als Anmelder (und damit Patentinhaber) benannt. Im GB-Patent erklärte sich damals der Erfinder persönlich im Text der Patentsbeschreibung (Patent-Specification), wie im folgenden Bild zu sehen ist:

Fig. 6: Titel-Ausschnitt aus dem zweiten Britischen Patent – Quelle: Europäisches Patentportal „espacenet“

Daher müsste bei den GB-Patenten, die beide mit dem Text „I, Heinz Kilfitt, …“ beginnen – mit dem Unterschied, dass im älteren Patent GB 411 347 die Scheibenstraße in Düsseldorf als Adresse genannt ist – ebenfalls Kilfitt als ERFINDER genannt werden.

Ich will hier kurz dieses Recherche-Ergebnis aus meiner Sicht interpretieren:

Vor 1931 hat Heinz Kilfitt nach meiner Recherche keine Patente für die Kamera angemeldet. Ich kenne auch keine Aussagen, mit welchen Ankündigungen der endgültigen Ausstattung Kilfitt den anderen Kamerabauern den Prototyp angeboten hat.

Alle deutschen Patentanmeldungen (6) wurden von Fa. Otto-Berning & Co, Schwelm, (in dieser väterlichen Firma war das RoBoT-Entwicklungs-Büro in Düsseldorf, Scheiben-Str. eine externe Abteilung) angemeldet und nennen Heinz Kilfitt als alleinigen Erfinder. Patentrechtlich (es ist ja ein Persönlichkeitsrecht) ist diese Tatsache sehr wichtig. Man kann ja auch mehrere Erfinder nennen.

Bis Februar 1934 (also bis kurz vor der öffentlichen Vorstellung des ROBOT mit Motorantrieb auf der Messe und in Zeitungsanzeigen) taucht das Federwerk nicht EXPLIZIT in den (deutschen und internationalen) Patenten auf.

Die Nennung des Erfinders Heinz Kilfitt als alleinigen Erfinder stärkt Kilfitts rechtliche Position gegenüber der Firma Berning. Auch wenn H.-H. Berning selbst noch in diesen Dingen unerfahren gewesen sein sollte: für den Geschäftsbetrieb und das Kaufmännische haben Vater (Otto) und Onkel (Hermann) ja klugerweise anfangs eine schützende Hülle über den jungen Firmengründer gespannt – und beide Senioren waren in ihren Firmen erfahren in Patentdingen, die sicher auch von einer Anwaltskanzlei unterstützt und beraten waren. Immerhin ging es hier um viel Geld!

Ab Februar 1934 wird das Federwerk in den Patenten offen gelegt. Das ist völlig im üblichen Rahmen: man vermeidet die Beschreibung einer Kern-Erfindung, die die Erfindung für den Markt besonders interessant macht, bevor das Produkt sowieso öffentlich vorgestellt oder geliefert wird. Der Grund: ab der „Offenlegung“ der Patentschrift (1 Jahr nach der Anmeldung) kann die Konkurrenz „mitlesen“ und gegebenenfalls eigene „Umgehungslösungen“ suchen oder finden, um die Neuheit zu kontern.

Diese Alleinerfinder-Position Kilfitts bleibt bei den Patenten ab 14./15.2.1934, in denen das Federwerk offen gelegt wurde, uneingeschränkt erhalten. Wäre die Basis-Idee des Federwerks tatsächlich primär von H.-H. Berning gewesen, wäre es eine erstaunliche Schwächung der rechtlichen Position der EIGENEN Firma gegenüber Kilfitt gewesen, dann NICHT Berning als Mit-Erfinder der Kamera zu nennen. Das geschah aber nicht.

Das würde auch dann gelten, wenn die „Idee“ des Federwerk-Filmtransportes in einer mündlichen Besprechung initiativ als „Idee“ durch Berning eingeflossen wäre. dabei muss man ja sagen: als Anmelder hatte die Firma Berning die Macht und die Kontrolle über den Inhalt und die Rechte aus der Anmeldung.

Also ist aus den Grund-Aspekten des Patentrechtes allein nahezu sicher davon aus- zugehen, dass Kilfitt das Federwerk seinerseits bereits im Basis-Paket der Kamera-Ausstattung vorgesehen hatte. Aber eine absoluter Beweis ist auch dies nicht, denn:

Selbstverständlich konnten die rechtlich-wirtschaftlichen Verhältnisse zwischen Kilfitt und der Firma Berning bzw. dem Gründer H.-H. Berning VERTRAGLICH ZUSÄTZLICH und anders geregelt sein – durch Anstellungsverträge, gesonderte Verträge über das geistige Eigentum und dessen Nutzung und auch durch den Gesellschaftervertrag der Fa. Berning, da ja H. K. auch Gesellschafter (40%) gewesen sein soll.

Auf privatschriftlicher Vertragsbasis könnte also dennoch im Grunde alles offen sein – ohne Kenntnis dieser Verträge kann man das Thema rechtlich-wirtschaftlich nicht abschließend beurteilen.

Trotz dieser Einschränkung hat nach der Patent-Lage – unter Annahme eines allgemein üblichen Geschäftsgebarens der Beteiligtenmit an Sicherheit grenzender Wahrscheinlichkeit Heinz Kilfitt die Federmotor-Idee gehabt.

JB: Welche Rolle können die ausländischen Patentanmeldungen in diesem Zusammenhang spielen?

HB: Zur Frage „Wer hat die Idee gehabt“ spielen die aus meiner Sicht zunächst keine Rolle.

Ich habe meine Schlussfolgerung aus den deutschen Patentanmeldungen gezogen, weil diese fast bei allen ausländischen Anmeldungen auch als Priorität genannt und eingetragen sind – mit Ausnahme des Kanadischen Patentes. Das spielt – wie das Schweizerische Patent – wahrscheinlich eine Sonderrolle, mit der ich mich hier aber gar nicht befassen möchte. Diese beiden Anmeldungen haben vermutlich mit den ursprünglichen Erfinderrechten gar nichts zu tun – die waren ja jeweils längst dokumentiert.

JB: Welche Rolle könnten sie gespielt haben?

HB: Das wird jetzt rein spekulativ! Die Kanadische Anmeldung hat Herr Kilfitt im September 1934 auf sich als Anmelder/Patentinhaber UND Erfinder getätigt. Davon muss Berning nicht unbedingt etwas gewusst haben. Sie enthält übrigens die umfangreichste und detaillierteste Beschreibung der Kamera sogar bis hin zu Zubehördetails!

Und schon davor, im Juli 1934, hatte Firma Berning eine Anmeldung in der Schweiz getätigt, ohne Kilfitt als Erfinder zu nennen – bzw. mit der Nennung der Firma als Erfinder. Sowas ist ja rechtlich bei uns heute auch möglich – besonders bei Arbeitnehmer-Erfindungen. Die Erfindung MUSS ja an die Firma übertragen werden, wenn die sie beansprucht.

Der Interpretations-Spielraum ist da groß. Es könnten quasi „Rückfall-Patentanmeldungen“ sein, die jeweils für den Fall gemacht wurden, dass in der Geschäftsbeziehung der Partner etwas schief ginge. Es kann genauso gut zwischen den Partnern vereinbart und abgesprochen gewesen sein. Ich habe keine Informationen darüber gefunden.

JB: Ihre Schlüsse aus der Patentlage wirken überzeugend auf mich. Ich bin bisher noch nicht zu einer gründlichen Auswertung des kleinen Aktenfundes aus Schwelm im Jahr 2002 gekommen. Ich sende Ihnen die Papiere jetzt einfach zu und wir besprechen dann gemeinsam, ob sich daraus neue Aspekte ergeben.

SCHNITT – so wurde es gemacht und eine Woche später meldete ich mich nach der interessanten Lektüre der Unterlagen, die Herr Bahr mir geschickt hatte wieder:

HB: Der Original-Aktenfund aus dem Jahr 1934 lieferte leider keine neuen Erkenntnisse in Bezug auf die Frage der Federmotor-Idee. Das interessanteste Fundstück in dem Konvolut, das Sie mir zugeschickt haben, ist diesbezüglich die Kopie des Interviews mit H.-H. Berning im „Südkurier“ (Konstanz) vom 14.11.1981, 17 Jahre nach seinem Rückzug  aus und Verkauf der Firma ROBOT. Diese Interview kannte ich bisher nicht.

In diesem Zeitungsartikel, der das Interview summarisch zusammenfasst und nicht im Interview-Wortlaut wiedergibt, findet sich folgende Passage über die Entstehung des ROBOT (Sie hatten mir ja die Stelle extra angestrichen):


Fig. 7: Ausschnitt aus dem Bericht über das H.-H. Berning-Interview am 14.11.1981 im Südkurier, Konstanz – Quelle: fotosaurier , Repro nach einer Kopie der Zeitung

Mir erscheint das hier fast grotesk, dass Herr Berning hier den Namen des „Tüftlers“ – nämlich Kilfitt, der die Grundlage seines Unternehmer-Wohlstandes geschaffen hatte – unterdrückt, ihm aber in der Sache selbst alle Ehre gibt: die Erfindung einer Kamera, die Filme selbständig transportiert.

Ich gehe einmal davon aus, dass dieser Text von HHB inhaltlich autorisiert erschienen ist. Wie sehen Sie das?

JB: HHB war alles andere als naiv, er galt als sehr guter, gewiefter – ja sogar sehr cleverer – Geschäftsmann. Unter dieser Annahme, dass dieser Artikel im Südkurier im Detail autorisiert war, ist das für mich persönlich das „letzte Puzzlestück“ in dieser Recherche, das das Bild vervollständigt:

Fazit – Ja, Kilfitt hatte von Anfang an die Idee des Federmotors im „ROBOT“.

Hätte H.-H. Berning ausgerechnet die Idee für das WICHTIGSTE Merkmal für den Erfolg des Produktes selbst gehabt – er hätte diesen Umstand historisch nicht einfach so untergehen und Spekulationen anheim fallen lassen … Und – mal ehrlich – wäre Kilfitts Leistung ohne dieses Hauptmerkmal 40% der Anteile an der Firma Wert gewesen (die H.K. ja gehabt haben soll!)?

Ich habe auch noch einmal gründlich nachgedacht: aber es scheint keine lebende Personen mehr zu geben, die man darüber hinaus heute noch fragen könnte. Haben Sie einmal versucht, in der Kilfitt-Familie nach Spuren zu suchen?

HB: Gut, dass Sie das ansprechen, Herr Bahr. Nein, ich habe das meinerseits nicht mehr versucht. Der Grund: Patrice-Hervé Pont, der ja ein kundiger und begnadeter Rechercheur in der Foto-Historie ist, hatte das anscheinend für sein KILFITT-Buch, das 2010 in französischer Sprache erschien, versucht. Er schreibt auf Seite 6 des Buches, dass die Familie Kilfitt leider nicht zur Bereicherung seines Buches („enrichir la documentation“) beitragen wollte. Wir haben meiner Meinung nach nicht das Recht, Privatpersonen wiederholt in einer solchen Angelegenheit zu kontaktieren, wenn bekannt ist, dass sie das nicht wünschen.

Allerdings: Wenn jemand dieses liest, der zu dem Thema etwas beizutragen hat, dann würde ich mich freuen, wenn er sich melden würde: entweder über die Kommentar-Funktion oder die Kontaktadresse im Impressum.

JB: Das ist ein gutes Schlusswort.

HB: Dann sind wir am Ende dieser Reise angekommen, die wir ein halbes Jahr lang gemeinsam gemacht haben. Es war spannend – und ich habe dabei viele Erkenntnisse gewonnen und es sind so viele neue Fragen aufgekommen, dass ich sicher noch einmal auf das Lebenswerk von H.-H. Berning aus anderen Blickwinkeln zurück kommen werde.

Berlin/Radolfzell, im April 2021


Nachdem wir unsere Geschichte veröffentlicht hatten, haben wir die klassischen ROBOT-Chronisten in Deutschland (Hans Grahner, Michael Ensel und Dr. Beltermann) und auch weitere Foto-Historica-Experten nach ihrer Meinung dazu befragt (mit Pont und  Bellon haben wir leider noch keinen Kontakt herstellen können).

Der entschiedenste Einwand kam danach von Hans Grahner, der uns mitteilte, er könne in unseren Argumenten keinen endgültigen „Beweis“ sehen. An dieser Stelle möchten wir darauf hinweisen, dass wir in unserem Text selbst festgestellt haben, dass trotz der Stärke der gefundenen Indizien dies kein „endgültiger Beweis“ sein könne und vielleicht nie sein werde, solange keine neuen primären Quellen auftauchen. Also nennen wir es ab jetzt einen „Indizienbeweis“.

Herr Grahner wiederholte die bekannten Argumente für seine Sicht der Dinge, und er machte außerdem per Mail an uns eine überraschende Mitteilung: er habe 1985 im Zuge der Recherchen für sein erstes ROBOT-Buch mit Herrn H.-H. Berning ein Interview geführt, in dessen Verlauf Herr Berning festgestellt habe, dass er die entscheidende Idee des Federwerks beigetragen habe – Herr Kilfitt habe nur die Konstruktion dazu durchgeführt. Die Idee alleine sei eben nicht patentfähig (stimmt!), deshalb sei Herr Kilfitt patentrechtlich der alleinige Erfinder (dieser Standpunkt ist im gegebenen Zusammenhang allerdings nicht korrekt – eine Begründung steht am Ende dieses Textes).

Der genannte Zeitpunkt für das Interview war ein Jahr vor H.-H. Bernings Tod und vier Jahre vor dem Erscheinen des ersten Buchs von Hans Grahner (ROBOT – Geschichte und Technik, Aachen, 1989). Nach erneuter sorgfältigster Überprüfung dieses Buches und auch des zweiten, 2002 erschienenen, Sammler-Buches stellen wir fest, dass ein solches Interview in beiden Büchern nicht als Quelle genannt wird. Das ist bedauerlich, denn es wäre bei der extrem dünnen Primär-Quellen-Situation in diesem Falle für alle Interessierten eine wichtige Information gewesen, die wir nun – quasi beiläufig – 36 Jahre später erhalten.

Es soll nicht der Eindruck entstehen, dass wir Herrn Grahners neue Information für unglaubwürdig halten – es ist nur so, dass wir Herrn Bernings Aussage nach dem umfangreichen Indizien-Check für wahrscheinlich unzutreffend halten, nachdem Herr Berning vier Jahre vorher (14.11.1981) im Interview mit dem Süd-Kurier sich entgegengesetzt zitieren ließ – und der Inhalt dieses Interviews damals auch zeitnah veröffentlicht wurde.

Nun haben wir auch noch zusätzlich das Interview zum 80sten Geburtstag von Heinz Kilfitt im Münchner Merkur zu berücksichtigen, in dem Kilfitt die Idee des Motorantriebs klar für sich beansprucht, und das die ROBOT-Nachfolgefirma (robot visual systems im Jenoptik-Konzern) in der Jubiläums-Schrift „Den Augenblick festhalten“ zum 75sten ROBOT-Firmen-Jubiläum 2008 zitiert mit dem Satz: „Es wäre schön, … wenn es eine Kamera gäbe, die man beim Fotografieren am Auge lassen könnte, ohne sie jedes Mal beim Filmtransport wegnehmen zu müssen.“

In dieser internen Firmen-Denkschrift (ohne ISBN-Nr. – das 135seitige Buch liegt uns vor) wird die Entstehung der Kamera sehr sachlich und konsequent so beschrieben, dass damit Heinz Kilfitts vollständiges Konzept einer motorisierten Kamera umgesetzt wurde. Wir sehen darin einen ähnlich sachlich-logischen Umgang mit der Materie, wie wir ihn uns auf die Fahne geschrieben haben.

Um es noch einmal zusammen zu fassen: es sind heute insgesamt 4 Interviews bzw. Zeitungsartikel zwischen 1978 und 1985 bekannt. Zwei Interviews mit Heinz Kilfitt (Münchner Merkur 1978 und Salzburger Nachrichten 1980), in denen dieser die Idee des Federmotors für sich beansprucht, was durch die gesamte uns bekannte sachliche „Indizienlage“ gestützt wird. Von zwei Interviews mit H.-H. Berning (Südkurier, 1978 und mit H. Grahner, 1985) spricht dieser im ersteren Kilfitt die Federwerks-Idee zu (dass der zusammenfassende Zeitungstext das Gespräch korrekt wiedergibt und autorisiert war ist ebenso wahrscheinlich wie die Möglichkeit, dass er im Wortlaut nicht autorisiert gewesen wäre) – im zweiten Interview, das Hans Grahner kürzlich als seine Quelle offenbarte, soll er die Idee für sich beansprucht haben. Eine Autorisierung dafür seitens H.-H..Berning ist auch hier nicht vorliegend bekannt. Zu diesem Zeitpunkt war Heinz Kilfitt bereits verstorben – das Erscheinen des ersten Buches von H. Grahner (1989) haben beide Herren nicht erlebt.

Tatsächlich müssen wir wohl damit leben, dass über den „Indizienbeweis“ und Wahrscheinlichkeits-Aussagen hinaus keine absolut sichere  Aussage mehr möglich sein wird. Glücklicherweise gibt es aber zwei Lebenswerke, die in ihrer jeweiligen Art und Größe davon unbeeinflusst Bestand haben werden:

  • das Lebenswerk des begnadeten Konstrukteurs Heinz Kilfitt, das bei Weitem nicht nur aus ROBOT bestand,
  • und das Lebenswerk des erfolgreichen Unternehmers H.-H. Berning, das in großer Nachhaltigkeit bis heute fortgeführt wurde und Bestand hat.

Leider muss man aus dem Verlauf der bekannten Ereignisse schließen, dass das gemeinsame Werk am Anfang beider Laufbahnen die Menschen nicht dauerhaft zu Freunden werden ließ. „Unkomplizierte Charaktere“ waren wohl beide nicht – aber das spielt hier keine Rolle, beweist in der Sache nichts – und geht uns auch nichts an …

Das Literaturverzeichnis wurde dem neuen Stand entsprechend bereits ergänzt und korrigiert, wo es nicht korrekt war.

P.S. – zur Rolle des Erfinders im patentrechtlichen Sinne:

Ein Patent ist ein persönliches Recht (Privileg). Es muss einerseits eine Neuheit in seiner Art darstellen („Die Idee“) und andererseits realisierbar sein: die offenbarte „Konstruktion oder das Verfahren“ müssen ausreichend nachvollziehbar dargelegt werden.

Richtig ist, dass eine bloße „Idee“ – ohne die Anleitung zu Ihrer Realisierung – nicht patentfähig ist. Die schönste Konstruktion nützt jedoch auch nichts, wenn die entsprechende „Idee der Neuheit“ nicht dahinter steht – also die Idee, die aus dem besonderen Konstrukt ein patentwürdiges Ding macht. Es ist also falsch, dass nur die Konstrukteurs-Tätigkeit als Erfinder-Eigenschaft zählt.

Es ist absolut unglaubwürdig, dass ein Unternehmer auf seinen anteiligen Erfinderstatus verzichten würde, da er damit seine rechtliche und wirtschaftliche Position dramatisch schwächen oder verschlechtern würde. Wer täte das – vor allem, wenn er selbst Anmelder und Inhaber des Patents ist. Das können wir uns – speziell bei den gestandenen Kaufleuten der Berning-Familie – nur schwer vorstellen.


  1. Verschiedene persönliche Mitteilungen durch Herrn Jürgen Bahr von Dez. 2020 bis April 2021.
  2. Website „“ von Michael Ensel
  3. Hans Grahner, ROBOT – Geschichte und Technik, Eigenverlag, 1. Auflage, Aachen 1989 (ohne ISBN-Nr.)
  4. Hans Grahner, Robot – Das Sammlerbuch, Eigenverlag, 1. Auflage 2002, Aachen (ohne ISBN-Nr.)
  5. Artikel von Dr. Beltermann in Photografica Cabinett,
  6. Blog-Artikel „Robot Royal III“ – 2. Teil in Website „KAMERAS“ von Peter Lausch,
  7. Patrice-Hervé-Pont, Kilfitt / Zoomar, 2010, Club Niepce Lumière, Ecully (F), ISBN 978-2-953-1991-4-7
  8. Patentliteratur aus den digitalen Archiven DEPATISnet, espacenet und Canadian Patent Databases
  9. Artikel im Münchner Merkur zum 80. Geburtstag von Heinz Kilfitt, 1978 – zitiert in Nr. 13 dieses Literaturverzeichnisses
  10. Artikel über Heinz Kilfitt in Sonderbeilage der Salzburger Nachrichten 31.3.1980
  11. Interview mit H.-H. Berning, Südkurier, Konstanz, vom 14.11.1981
  12. Mitteilung von Herrn Grahner im Mai 2021 über sein Interview im Jahr 1985 mit H.-H. Berning – wörtlicher Inhalt dieses Interviews ist nicht bekannt.
  13. Den Augenblick festhalten / Capture the Moment – Firmenschrift zum 75. Robot-Jubiläum der ROBOT-Nachfolgefirma robot visual systems, Monheim, 2002, Redaktion Sabine Preller (ohne ISBN-Nr.)

Bemerkung: es gibt natürlich viel mehr Literatur zum Thema ROBOT (siehe Literaturverzeichnis im Buch von Herrn Grahner), ich habe hier nur angegeben, welche Literatur beziehungweise Mitteilungen wir heran gezogen haben, um diesen Text zu verfassen.


My Crazy Lenses / Meine sehr speziellen Objektive – Focal length 24mm / Brennweite 24mm – FoV 84° – Part I

What was the real improvement in SLR-wideangle-lenses since the invention of the retrofocus principle over the last 65 years? Does my personal judgement from analog-film-days which lead to the definition of „legendary optics“ – which I kept in my lens-portefolio over that time – correlate with objective resolution-measurements? Here are my findings.

Actualisation: Im my first published version there was an error regarding the year of appearance of the Topcor 2,5cm-lens, which was communicated to me by a reader: thank you: it’s 1965 instead of 1959! But this difference does not change anything in my findings and conclusions …

1 – Introduction

24mm focal length is a real milestone in spreading the field of the view in wideangle lenses, coming down from FL 35mm over 28mm. For the SLR-camera-user this age started with the appearance of the retrofocus lenses in the 1950s. Several designers came out with this optical principle within three years – with Pierre Angénieux earning the honours of being FIRST (in time and quality – 1950, 35mm f/2.5) in this disciplin.

This is a report about SLR-lenses for 35mm-still-foto-cameras with focal lengths (FL) between 23mm and 25mm.

This is a report about a number of legendary lenses, which I happen to own or could lend from a friend  („phothograf“), most of them being milestones of optical engineering in their respective design-periods.

Fig 1: three of the very first historical retrofocus-lenses with FL 24mm and 25mm – source: fotosaurier

Over the decades of my own practical use of SLR-lenses (of nearly all makers-brands!) has lead me to an understanding of the quality for normal photographic use.

This collection of test candidates does NOT claim to be a COMPLETE collection of all design legends of 24mm/25mm. There is a large gap in time with prime-lenses between 1984 and 2015. That means: the legendary first historical aspherical lenses in this range are missing in the comparison. If I ever will be able to get hold of them for a test, I would update this article. The modern lenses tested for comparison are (of course) all aspherical types!

In spite of the fact, that important legendary lenses of the 1980s and 90s are missing here, this report allows to draw some interesting conclusions about important steps in optical lens-engineering, which finally lead to Ultra-Wideangel-Lenses which have uniform resolution and contrast over the complete field of view (FoV).

I have always looked for a method to show the quantitative progress in optical quality of photographic lenses over the nearly last 100 years – and I think I have found a good way to understand this progress with my new comparison-charts (Fig. 4 and Fig. 5 see below). What was surprising: the progress over time is independent of the lens-maker and brand. It is generated by a sequence of milestone-like innovations by singular design-legends, innovative calculation progress, creation of new glass-formulations and finally the lens-making-process – espacially allowing for the production of aspherical lens-surfaces! Once the innovation-step is basically made, it is spreading around the globe very quickly (typically within one or two years!).

There are few lenses, which stand out of the general quality-development curve, reaching a higher level of resolution earlier than most others – to be seen here mostly in Fig. 5:

ATTENTION: These measurements are made with USED lenses today, some of which are more than 60 years old! There are influences from ageing and wear (even abuse …) which have become part of the lens-properties when we measure them after long time. However, I only make measurements with samples of lenses, if the optics are clear and undamaged and the mechanics do not show excessive wear or abuse.

Fig. 2: Starting with big-big negative front-meniscus-lenses (at left Angenieux Retrofocus 24mm f/3.5 and Zeiss Jena Flektogon 25mm f/4) the lens-designers soon learnt to reduce the front-lens diameter (at right: Distagon 25mm f/2.8 for Contarex and Olympus OM 24mm f/2,0), creating better results and generating lens-bodies, which were more acceptable  – source: fotosaurier

2 – Data section for 15 historical 24/25mm-prime lenses, 3 modern 23/25mm prime lenses and 4 modern zooms at 24mm-setting:

Auflösung ETC 23-25mm korr

Out of this Chart I have filtered two separate charts, showing the development of RESOLUTION over the decades.

Fig. 4 shows the center-resolution open aperture (blue) and stopped down to the aperture with the highest resolution (green) in the center:



The second chart is showing the corner-resolution at open aperture (blue) vs. the best resolution-value stopped down (green) in the corners (mean value over all four corners) – where „corner“ means a value of 88% – 92% of the full picture circle of the lens which is 21.5 mm radius:

23-25mm Resol_Corners_korr

Fig. 5: Corner Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and optimum aperture (green, which means: the aperture at which the weighted mean of all the 46 measurement-places over the 24x36mm-frame is maximum. (The maximum corner resulution-value of the individual lens may be higher.) – source: fotosaurier

You see, that nearly all of the difference in resolution of historical top-notch wideangle-lenses for SLR is in the corners of the picture (and of course also continuously in-between center to corner areas). This is easy to understand, because the difficulties for lens-correction rise dramatically with the FoV, which is here 84 degrees corner to corner diagonally.

Besides the resolution, there are other important properties, which improved dramatically over these six decades of lens-engineering history:

a – Chromatic aberration (CA in pixel): It is very low in all these lenses in the center. It typically ranged between 4 and 8 pixels in the corners for the very first lenses of this type. It stayed around 2-3 over the time before aspherical lens-surfaces could practically erase it. Today with the best modern lenses, the value is close to zero (under 0.5) without camera correction and zero with correction.

Among the early lenses the Zeiss Distagon 25mm f/2.8 (though not really outstanding in resolution compared to the other early lenses) pops out, because it had already values of 2-2.5 pixel in the corners – together with the „unicorn“ Topcor 2,5cm f/3.5.

Please consider, that the CA-value in pixel for the same lens is the higher the smaller the pixel size of the sensor is  – here 1 pixel is 3.77 µm.

b – Linear distortion (%): distortion shows – from the beginning – the biggest differences between the legendary lenses of the different designers and brands. The designer has to do a compromise-job in each lens, balancing out the design between resolution, chromatic aberrations and distortions. 0,5 pixel is a very good CA-value even acceptable for acrchitectural work (though „zero“ would be better, of course), 0,75-1,0 pixel is a good compromise-value and 1.5 pixel just acceptable for alround use.

Looking at the spread-sheet Fig. 3, it is surprising, that Angénieux with the very first retrofocus-lens of this wide angle decided to go for nearly „ZERO“ distortion in his design! He had gone close to zero in the 35mm and 28mm-designs before that, too! Probably he wanted to give a statement of his art, because this was really difficult at that time … At the same time he accepted a somewhat higher CA of 7-8 pixels (corresponding to 0.03-0.04 mm). In my collection of top-notch lenses such a low distortion does not appear again before the modern Zeiss Batis Distagon 25mm f/2.0 – and only the legendary 1971 Minolta MD 24mm f/2.8 (including the VFC-Version) came very close with ca. 0.18-0.29% distortion in my measurements.

c – The close-focusing system: there are further innovations to consider, e.g. the lens-design for close focusing. Here one of the important innovations is the floating-element close focusing system – introduced 1971 by Nikon and Minolta first for wideangle lenses as far as I know. This is one of the early merits of the two 1971/75 24mm-Minolta-lenses.

3 – Conclusions:

3.1 Center-resolution:

Since the early days of geometrical optic lens-design with Petzval, Abbe and Seidel, lenses could be designed absolutely perfect for nearly unlimited image-quality (resolution and CA) „on-axis“, which means: in the center of the picture-field … And the  famous designers did it all the time – as soon as they used 4 or more elements in a photographic lens-system.

The first time, I found a proof for that, was with my resolution-measurements on Bertele’s first Ernostar 100mm f/2.0 from 1923 (a four-element-design WITHOUT COATING!). Compared to the legendary Leitz Apo-Macro-Elmarit 100mm f/2.8 from 1987, this lens achieved 98% of the resolution in the center – but only in the center! See my Ernostar-Bog-Article here. (This was the very first report in my photo-blog …)

So, it is not really surprising, what Fig. 4 is telling us: all top-notch lenses show a very high resolution level in the image center since the invention of the retrofocus wideangle design in the 1950s – and they are all on the about same level – though being historical lenses with up to 65 years of age on their back! The reason for that result is, of couse, that only legendary lenses of all brands are taken into the comparison! Maybe the Takumar-lens happens to be one of the weaker examples …

The Olympus OM 24mm f/3.5 „shift“ drops down somewhat against its neighbours. That is no quality issue: this lens has an image-circle diameter of 57mm for up to 10 mm shift! It came out 1984 long before Canon brought out its famous tilt-shift-lenses … Look at the corner-resolution result of this lens in Fig. 5 – it resolves extremely even over its FoV!

in this graph I marked two horizontal lines: one for the resolution of 2.000 LP/PH (linepairs per picture height), corresponding to the resolution of a 24 MP-sensor, which today is the de-facto-standard for  modern digicams. It normally has 4.000 by 6.000  pixels – and 4.000 pixels in the picture height, corresponding to 2.000 Linepairs. At the same time it is just (+15%) above the 21 MP which I estimate for the resolution of modern analogue (general purpose) film emulsions.

The other (upper) horizontal line marks the 3.184 LP/PH Nyquist-frequency of the Sensor in the Sony A7R4-digicam. This is physically the limiting resolution-value for the camera itself. Today, however, the software-algorithms in the camaras can generate structures in the picture, which are typically 15 – 20% higher in resolution, compared to the Nyquist-frequency. And they do this without creating an artificially looking „oversharpened“ picture! Good job!

This means:

All the legendary historical 24/25mm-retrofocus-lenses for SLR-cameras do out-resolve the modern 24 MP-Digicams in the center – mostly even with open aperture! And many of these lenses even come very close to (or exceed) the Nyquist-Frequency of my 60,2 MP digital camera.

Among the historical lenses two examples peek out a little bit (they peek out much more in the graph for the corner-resolution!):

The legendary 1965 Topcor 2,5cm f/3.5 exceeds the Nyquist-frequency of 3.184 LP/PH – and stopped down to f11 it is in the center the highest resolving of my 24/25mm-lenses until today. Together with the tremendous result of its corner-resolution it is one of the exceptional lenses, which I call my „UNICORNS„. Until today, I have not found any explanation for the astonishing early level of performance of this lens – how could that have been achieved? (15 years before the next-best Olympus-lens!) – and who did it? – and where did this person go afterwards, when Topcons innovative power faded out, to bring in her/his inginuity? (… to Olympus?). (This observation refers to other early Topcor-lenses al well!)

The other unicorn peeking out here is the Olympus OM 24 mm f/2.0 of 1973. In my lens-collection it is exceeded only by the 40 years younger Zeiss Batis 25mm f/2.0. But, to be honest, the difference is not really that dramatical – considering the four decades …

Referring to the zoom-lenses (set at FL 24mm) in this test: I just was curious, where the modern zooms would stand in such a comparison. We learn that the 1kg-Monster-Tokina 24-70mm zoom at 24mm has one of the best results – even at f/2.8 … in the center of the picture.

At the end of the line-up of 21 lenses I put the Fujinon-Zoom 32-64mm f/4 at 32 mm on the Fujifilm GFX100 (33x44mm – 102 MP), which corresponds to FL 26mm on „full-frame 35mm“. This shows, that for an essentially higher resolution in the picture-center, we today have to go to a larger sensor-format.

3.2 Corner-resolution:

Fig. 5 contains the important informations of this comparison-test. It shows, that step by step all the improvements in innovative design, glass-formulations and aspherical surface-generation were needed to bring finally the corner-resolution of the picture up on par with the center resolution at 24mm focal length, which is possible today – but only with the use of aspherical lens-elements!

In the graph for the corner-resolution I have added a third horizontal line, which marks the resolution at 50 Lines/mm – corresponding to 600 LP/PH. This is needed to judge the corner-resolution of the early historical lenses.

In the 1960s a wideangle-lens was rated „very good“, when it achieved a resolution of 40 Lines/mm (Modern Photography and others). I have written an article about this already here (in German).  Open aperture most super-wideangle-lense started open aperture in the range of 26 to 32 L/mm in the 1950s and 60s. Stopped down practically all the tested historical lenses surpassed the 40 L/mm-limit.

From 1958 on (ENNA) the stop-down corner-resolution rises continualy (with the exception of the two „unicorns“, already identified in Fig.4) until end of the 1970s,  it arrives close to the 2.000 LP/PH-level, which means: from now on the top-notch-lenses out-perform standard analogue fine-grain film (1977 Nikkor and 1984 Olympus). This last step was then achieved by the use of extraordinary dispersion glass-types.

The two „unicorns“ in this test arrive much earlier at this level: the Topcor 2,5cm f/3.5 out-performs analogue film already in 1959 and the 1973 Olympus OM 24mm f/2.0 exceeds this and comes close to todays modern aspherical lenses.

The modern aspherical prime-lenses are represented in my test by two very different samples:

There is the 23mm f/4 Fujinon, which originally is a GFX-lens – but in this test it is measured in the 24x36mm-Mode also with 60.2 MP on the GFX100, achieving the state of the art for 24x36mm lenses (Batis and Sigma-i) as a middle-format lens!

Just as I made my measurements for this test, the SIGMA i-Series 24mm f/3.5 arrived as a representative of a new thinking: no „impressive“ technical data   – but (hopefully) impressive preformance instead. The result shows: it achieves reference status on a 60.2 MP-sensor with corner-resolution at 85-95% of center-resolution, plus zero-distortion, zero-CA and very close focussing!

Also great news: modern zooms like the Sigma G 12-24mm f/4 – measured at 24mm – arrive now at this level of prime-lenses also in the corners!

As I had no samples of the early historical aspherical lenses in this test, we can not see, in which steps the aspherical lens surfaces moved the wideangle-performance in the picture-corners to the present level.

Maybe this gap can be filled out in some future times.

NOTE 1 – All resolution-values, which are published in this article, refer to MTF30 – what means: the point on the MTF-curve (see Fig. 7), which hits the 30% contrast value.

NOTE 2 – in Part II of this Article I will share some more informations about each individual lens (including pictures, MTF-curves and  lens-schemes).

Appendix: Method of measurement and definition of results

I use the set-up and software by IMATEST with the original IMATEST-Target. I use the large SFRplus-Setup-Image with a physical hight of 783mm bar-to-bar vertically. The distance from target to lens-flange is 0,97 meters. In this area 46 targets are analysed and I share MFT30-weighted-mean-resolution-values (all-over, center and corner), edge-sharpness, linear distortion and maximum lateral CA-values.

Resolution-values are given in Line-Pairs per Picture Height (LP/PH) – where the picture-height is always 24mm. Edge-sharpness is given in pixels (width 3,77 µm).

Fig. 6: IMATEST test-target 783mm-bar-to-bar distance. Resolution is NOT measured in the small concentric targets, but at the outside-edges of the black boxes, which are tilted b ca. 5 degrees – source: fotosaurier.

For the measurement I used a SONY A7Rm4 with 60,2 MP-resolution which has a pixel-width of 3,77 µm. The theoretical resolution-limit of the sensor is 3.184 LP/PH (Nyquist Frequency).

The camera setting is used basic as delivered from factory at ISO100 and exposure-compensation of -0.7 stops, using out-of-camera JPEGs. All measurements are made with the identical camera-body (which is important for a precise comparison: I have used one other (earlier) body of this model in comparison, which gave resolution-values between 50 and 200 LP/PH lower than my own camera-body). The repeatability with this method I estimate at 2-2.5%, using ALWAYS manual focusing on the lens with maximum focusing enlargement (11.9-fold) in the camera-viewing-system. Measurement is repeated with re-focusing until a stable maximum resolution at open-aperture of the lens is found and then pictures of the resolution-target are taken with the focussing made wide open for all full down-stops of each lens.

Edge profile (edge-sharpness) is the width of the rise from 10% to 90% intensity at a dark-bright edge in the test target – measured in pixel (width 3,77 with the camera used) – Example shown here for the latest 24mm-prime-lens SIGMA i-Series 24mm f/3,5 – at open aperture f/3,5:

Fig. 7: Edge-profile (top) and MTF-curve (bottom) from the IMATEST software – here the perfect graphs for the brand new Sigma 24mm f/3.5 – at open aperture. I will publish these Curves for all the lenses in PART II of this article – source: fotosaurier

Cromatic Aberration (lateral in the picture-plane) is also measured in pixel separate for red against green and blue against green over the full picture field – in the spread-sheet I note the maximum value, which is in most cases for blue and for most historical lenses in the corners of the picture – sometimes however in the intermediate area.

For more details of testing read my special blog-Article here.

Copyright: Herbert Börger

Berlin, March/April 2021

Ice-Age in Berlin – Berliner Eiszeit

Berlin, Ferbruary 21, 2021

During February 2021 we received a new lesson about the difference between „Weather“ and „Climate“. During rising average-temperatures, accompanied by very mild winters normally, we experienced something, which in fact deserved the name of „WINTER“ with snow, accompanied by temperatures outside your front-door, which you used to know from your deep-freezer!

Water is a fascinating element, which again and again creates wonderworlds for photographers: and I am going to show here some of these wonders, using my „Gartenmikroskop“ („Garden-Microscope“), as I have done with liquid water last summer – see my blog-article „Nach dem Regen“.

For this winter I had hoped, that there would be the occasion to photograph the crystallized form of water in nature (hoarfrost – German: Raureif) – but there were no appropriate conditions here for hoarfrost this year.

Instead we got an impressive occasion to observe amorphous ice.

Here is a teaser-photo:


Picture 1: I called this „The Frozen Torso“ – it is created by water from dewing snow, coming down from our roof. The sun has two important functions here: first dewing the snow and then creating the illumination for this picture…

NOTE: In my photography I only use natural ambient light. My pictures are out-of-camera with just minimal (necessary) adjustments of brightness, gradation-curve, color-dynamic and saturation to show the „real“ scene, which I have seen. My camera for this expedition is the GFX100 with the 120mm-Macro-lens.

In these days before 12.02.2021 (a nice panlindrome date!) we had -15 °C even at noon time with bright sunshine. the days before there had come down 25 cm of snow.

During a short noon-period with the sun perpendicular to the roof, melt-water was generated and was pouring out of the rainwater gutter – down the heavy steel-chain – refreezing directly on the ice-cold steel structure.

Picture 2: Melt-water running down the steel-chain fom the rainwater-gutter at -15 °C, creating a phantastic sculpture on the chain.


Picture 3: Detail – process of „building“ the ice-sculpture.

In the following picture you see the the steel-chain, carrying the ice-sculpture, before it was completely enclosed


Picture 4: The golden colour of the steel-chain is real – in summer it is sprinkled with ground-water, which contains high amounts of iron and generates this nice „plating“ at the lower end of the chain. Reflexes and deflections of this chain-surface generate the „Whisky-on-the-rocks“ colour situation on some of the following pictures (and there I may have increased dynamic and saturation, to pronounce this …)

Close to the rainwater-chain there are standing a forsythia and a rose-bush.

The splashing around „undercooled“ melt-water is creating sculptures of their own in these:


Picture 5A and 5B: The forsythia-buds, which is dreaming in the ice here, are about to break open within three days from today (14 days after I took this picture), due to a dramatic temperature-rise of 30 K following the deep cold.


Picture 6: Rosehips „on the rocks“. The blue is from cold, clean-white snow in shadow-areas under clear-blue skies!

If I were a notorious photoshopper, I would have composed myself as a 30 mm tall climber on a rope into the icy „north-side“ of the sculpture …


Picture 7: Freshly sculptured ice at the north-side during the freezing-process.


Picture 8: … and here the promised „Whisky-on-the rocks“, deflecting the golden colour of the rainwater-chain – colour saturation set „high“.


Picture 9A+B: Spacy formations, which are created in the first freezing period – surface still wet.


Picture 10: Extremely dynamic ice-formations – drops still falling down from the rain-gutter…


Pictures 11 A-C: Clear and deep ice against the sun.

Some sections in the ice looked like deep-sky objects straight against the sun:


Picture 12: „Deep-sky object“

The sculpture boosted my phantasy in many different views.


Picture 13: „Asteroid“

After another deep-freezing night and dry weather, the surface of the ice re-crystallized in the surface, which generated a completely different appearance: a matte skin with an opaque, shining body of the ice-sculpture.


Picture 14 A+B: „Frozen Goliath“ – with a huge Nose and a moustache …

During the freezing-process the water-drops, which hit the growing ice-sculpture, did freeze so fast, that icicles grew in horizontal direction, where the splashing drops had a horizontal component of the dynamic momentum:


Picture 15: Generation of an oblique icicle due to horizontal momentum of drops and very low temperature, which forces to freeze the water extremely quick.

This leads to such extraordinary details – seen at the next day:


Pictures 16 A-C: 3D-Icicles

And under certain (natural) lighting conditions, the ice-sculpure can get the look of Metal …


Pictures 17 A-C: „Frozen Metal Insects“ – this is Ice – Not Metal! I assure you again, that I use no digital filters and no HDR for these pictures – just natural ambient lighting and the fine-adjustment of gradation-curve, colour-dynamic and -saturation.

I hope, you enjoyed my trip through the ice-sculpture, which was created by a fancy mood of nature – and is gone by now since several days!

Copyright – Herbert Börger, fotosaurier – Berlin, 21.02.2021

Long Telephoto-Lenses and Temperature

Would you expect, that the optical performance of your photographic lenses can be seriously influenced by the operating temperature? Have you ever realized lack of sharpness in extreme environmental temperature conditions?

The simple answer is, of course, that within the specifications for use, given by the makers, there should be no such concern. But it is not that simple.

For amateur astronomers with their mostly very long telescope-focal-length optics (mirror or lens) this fact is very common:

before using the instrument in the clear and mostly cold winter-nights, you have to put the telescope early enough outside (shielded against due) to bring it into a thermal equilibrium with the ambient air at the time you start your observations. The reason: during essential temperature-changes of the optical components (mirrors, lenses) and their mounting devices, their surface-shapes and adjustment change and destroy the extremly precise optical alignment – until the thermal equilibrium is restored. The refractor-lenses may be mounted to allow for some thermal differences, but large mirrors have to be mounted and adjusted extremely precise, so that the cooling-down of the mount, that holds the mirror, may even generate mechanical tension on the mirror – and that generates optical distortions! So we should remind: the absolute temperatures are not the problem – but the thermal transition stages from warm to cold or opposite way!

This fact is also an important design aspect for telescopes: the preferred structure is „as open as possible“ to allow the air to circulate and to generate a good heat-exchange with the internal telescope structure to speed up this process. While the air gets colder during the night, the instrument’s optics can follow close enough to keep the temperature difference low.

There is an impressive document in the archives of the Mt. Wilson Observatory (near L.A., USA) describing the „first-light“-moment of the new 2,5 meter mirror telescope (Hooker-Telescope) on November 1, 1917 – use this link to the adventurous story! („First light“ is the moment, when somebody looks through the finished instrument for the first time.) Here the first-light moment at Mt. Wilson is described near the end of the long text in this link and shows, what a three hour cool-down time made to the optical properties of the 2.5 meter mirror, (which was made by George Willis Ritchey – and allowed for the detection of the expansion of the Universe by Edwin Hubble shortly after taking this telescope into service.).

Picture 1: 2,5 m (100 inch) Hooker-telescope on Mt. Wilson: just struts hold the mirrors to ease the circulation of air for for a fast achievement of  temperature equilibrium – source: Ken Spencer, CC BY-SA 3.0 <>, via Wikimedia Commons

Many instruments in astronomy are closed assemblies, using a corrector-plate (Schmidt-system) or meniscus-lens (Maksutov-System) in the entry of the tube and the mirror at the rear-end (catadioptric telescope – see also my specific blog-article here.) The big disadvantage of these closed systems is the „inertia“ in cooling down due to the closed volume in the telescope tube. Therefore often slits around correctors and mirrors are placed, which allow for sufficient circulation of air through the tube – and even active ventilation is used to shorten the period to reach equilibrium. In some big modern telescopes, the mirror may even be actively temperature-controlled.

Picture 2: „Closed“-tube optical system Maksutov-Cassegrain-Teleskop – source: Wikipedia – Author: Halfblue –

Long telephoto-lenses for normal photography can not be open systems, because the lens-barrels definitely have to be tightly sealed to avoid the invasion of dust, humidity or corrosive gases.

This means, that you have to plan and prepare carefully to bring your equipment to ambient temperatueres in time to avoid these thermal problems. For photographic equipment this would equally refer to the situation, when you come from climate-controlled environment (e.g. hotels) into wery hot (and humid) areas. There is an additional problem, that in bringing cold equipment into hot-humid environment, there might be condensation of humidity on the lenses/mirrors.

This problem is even more delicate with catadioptric lenses (mirror/lens-systems often called just „mirror-lenses“ – in German „Spiegel-Objektive“). In these the surface-shape of the mirrors and the adjustment from mirror to mirror is extremely sensitive for the optical performance of the lens-systems.

I have to-date not realized this with focal lengths of up to 350 mm (though it might be also there to a certain dergree) – but this is definitely an important aspect for focal lengths between 500 mm and 1,000 mm or longer.

From which focal length on these problems may occur, will mainly depend of the type of optical system  – and of course the resolution of your cameras sensor!

Here I want to show you this effect with an example of a catadioptric lens of 800 mm focal length: the Vivitar Series 1 Solid Catadioptric 800mm f/11, used on the Sony A7Rm4 (60,3 MP, 35mm format – 3.77 µm pixel-pitch).


Picture 3: Vivitar Series 1 Solid Catadioptric 800mm f/11 – source: fotosaurier

It was the first day this year with just sligtly above zero outside temperature (+2 degree Celsius) and very clear air. At ca. 1:15 p.m.I set out the 800mm f/11 lens on the tripod on the balcony and tried to focus on my favorite landscape test target: a roof-top at about 40 m distance.

The advantage of this target is, that it has large AND fine details, low contrast AND high contrast areas and – most important – a sufficient depth, so that I can detect focusing errors very well!


Picture 4: Overview picture – complete field of view of the „roof-top“ landscape target in ca. 40 m distance taken with Sony A7Rm4 and Vivitar Series 1 Solid Cat 800mm f/11 – this is the „sharp“ picture after the cool-down period of the lens – source: fotosaurier

It was nearly impossible to meet the positive focus position – so I did the best guess and made the photo – and here is the 100%-crop around the focus-position, which is the first steel spring at the right side of the roof edge:


Picture 5: The 67% detail of the focus-area (clamp and spiral-spring!) made 15 minutes after setting the lens outside. Best guess of focus, however, you will find no sharper point in front or behind – the distance scale on the lens says 50 meters in this non-equilibrium temperature situation – source: fotosaurier

At this point of time the lens internally is still on room temperature of about 21 degrees … starting to cool down for about 15 minutes, which it took me to set everything up and focus carefully – but desperately, becaus no really sharp focus was seen in high viewing-magnification.

I had focused using the maximum viewfinder enlagement in the Sony camera and was sure: this is not a really sharp picture. But I could not find a better focus. Picture 5 is a 67% crop of the image taken. And as the subject has some depth: no – there is no better focus to be seen on this picture in front or behind the plane of the spring.

I left the lens with camera in this position for three hours and refocused the lens: now I experienced a quite snappy focus – and you can see the same crop-area here:


Picture 6: The 67% detail of the focus-area (refocused!) after additional 3 hours of the lens outside – source: fotosaurier

The gain in sharpness is damatical – and it exists over the whole field of view, not only in the plane of focus! Also out-of-focus areas show higher contrast now.

However, it connot be ignored, that this catadioptric lens in this picture does by far not use the potential 3,168 Line-Pairs per Picture Height Nyquist frequency of the cameras sensor. My estimate is, that we have here an MTF30 of about 1,100-1,200 LP/PH. So either the three hours of cool-down time were not yet sufficient – or the lens may be not better than this.

(The 1,200 LP/PH MTF30-resolution would correspond to 100 Lines/mm in older „analog“ data. Very good CATs in the 1970s had center-resolutions (measured on film) between 50 and 60 Lines/mm. This relation makes sense, as the difference (factor 0.6 lower for film!) may be owed to the effect of grain and the thickness of the emulsion.)

The „Solid Cat“ 800mm f/11 is a massiv piece of optics – the lens barrel is nearly completely filled with glass, as you see in the lens-scheme:


Picture 7Lens-scheme of the Vivitar Series1 Solid Cat  – source: Perkin Elmer Patent application

It is an absolutly unusual mass of glass – so I would not exclude, that the cooling time should even be longer to reach the thermal equilibrium. My plan is, to make a sequence of photos taken in shorter intervals and over a longer time – as soon as the outside temperatures go down again.

I am not so happy with the fact, that I had to use landscape-scene-shots to demonstrate the performance of the lens, however, for 800mm focal length my IMATEST testing-arena is too short. Maybe I will make a parallel IMATEST-trial then with a 500mm CAT.

So, please, consider this as a first teaser for the topic which has shown clearly, that photographic lens performance may seriously suffer during the time, a lens is undergoing strong temperature-change and before equilibrium is reached.

I promise to come back with a more elaborate research-plan soon.

Herbert Börger

Berlin, December 4th, 2020

Aphorism of the day: Scientific research is most successfull, when it brings up more new questions than it has answered. (fotosaurier)

Copyright: fotosaurier

Nach dem Regen – unterwegs mit dem „Gartenmikroskop“

Der Schauplatz dieses Essays ist der Ziergarten, den meine Frau seit 2017 in Berlins Südosten  angelegt hat.

In den meisten Sommern bisher (3 von 4) herrschte große Trockenheit – wenn nicht gar Dürre! Ein Grundwasser-Brunnen und ein fein verästeltes Betropfungs- und Besprinkelungs-System verhinderten das Schlimmste. Wir haben seither immer  eine Flasche Schampus kalt stehen, die wir öffenen, wenn es so viel geregnet hat, dass der Boden vollständig nass wird. Da das lange Zeit fast nie geschah, haben wir manche Flasche dann eben aus Verzweiflung geleert … ehe sie verdunstet wäre!

Zumindest hat Regen bei uns den Charakter eines besonderen Ereignisses – und Außerirdischen von einem Regenplaneten wird sicher ganz besonders unser dämlich-seliger Gesichtsausdruck auffallen, den wir haben, wenn wir draußen stehen und uns die dicken Regentropfen ins Gesicht klatschen lassen. Das passierte nun endlich in diesem Jahr etwas häufiger.

Nach dem Regen verändert sich die Welt im Garten dramatisch: die Farben werden leuchtender und satter, weil einerseits Blütenstaub von den Pflanzen abgewaschen wurde und andererseits die Luft nun viel klarer ist. Außerdem wird das auf die Oberflächen der Pflanzen fallende Licht nicht nur diffus gestreut, sondern es sitzen Millionen kleiner Linsen auf den Blättern und Blüten, die Das Licht bündeln, beugen und brechen.

Kommt nun die Sonne heraus (möglicherweise erst nach Stunden) hat die Szene ihren großen Auftritt: Myriaden von Tropfen leuchten und glitzern … es ist ein optischer Rausch!

Aber wie soll man das fotografisch „erfassen“? Das „Ereignis“ selbst ist im mikroskopischen Bereich angesiedelt. Wie soll man da in einer Übersicht einer Garten-Szene einfangen, was der Mensch als Betrachter ja eigentlich erst in seinem Gehirn aus dem physikalischen Ereignis und der physiologischen Reizkette als „Impression“ komponiert?

An dieser Aufgabe arbeite ich noch. Ein erstes Ergebnis sehen Sie hier:


Bild 1: Sonnenaufgang nach nächtlichem Schauer. Quelle: fotosaurier


Bild 1a: Hier in einer Variante … Quelle: fotosaurier

Meine Sofortlösung lag in dem alten, bewährten Prinzip „pars pro toto“ – deutsch: der Teil spricht für das Ganze!

Ich lasse mich auf Augenhöhe an die pflanzlichen „Gartenbewohnern“ heran und studiere ihren äußeren und inneren Kosmos, in der Hoffnung, dass in der Summe der Bilder sich das GANZE im Betrachter zusammensetzt.


Bild 2: Frauenmantel – der Pedant unter den Bodendeckern: versuche mal, ihm eine Lücke in den Perlenschnüren nachzuweisen … – Quelle: fotosaurier


Bild 3: Polyantha-Rosenblüten – viele meiner Aufnahmen entstehen sehr früh am Morgen bei sehr flachem Streiflicht – Quelle: fotosaurier


Bild 4: Rittersporn (Wildform) – diese Schönheit ist nur ca. 12 mm lang – Quelle: fotosaurier


Bild 5: Lilie – diese Blüte hat ca. 100 mm Durchmesser – Quelle: fotosaurier


Bild 6: Blatt des Phlox (rosa) hat die vermutlich niedrigste Oberflächenspannung in unserem Gartenreich – Quelle: fotosaurier

Wie und wo, sich Tropfen in welcher Gestalt auf Blättern, Stengeln und Blüten finden, hängt von physikalischen Größen ab (ja: und auch ein bisschen physikalische Chemie ist dabei…): Oberflächenspannung, Luftfeuchtigkeit, Temperatur, Geometrie bestimmen die Form und Größe des Wassertropfens und den Aufenthaltsort und schließlich bestimmen die physikalisch-optischen Brechungsgesetze des Lichts die Erscheinung.


Bild 7:  Jeder einzelne Tropfen projiziert ein Bild der Pflanze selbst und der umliegenden Gartenlandschaft! Hier an der Hartriegel-Scheinblüte – Quelle: fotosaurier


Bild 8: Am Wild-Rittersporn – die Kleinsten haben den größten Auftritt –  Quelle: fotosaurier


Bild 9:  Bild des Gartens bis zum Horizont … in einem Wassertropfen am rosa Phlox – Quelle: fotosaurier


Bild 10:  Wasser-Kugellinsen projizieren Brennpunkte des Sonnenlichtes auf das Blatt am Frauenmantel – Quelle: fotosaurier


Bild 11: Das Blatt des Spier-Strauches trägt „Brillianten“ – Der Wassertropfen als Lupe vergrößert die Blatt-Härchen, auf denen der Tropfen schwebt – Quelle: fotosaurier

Die Vielfalt der Kompositionen, die sich daraus ergeben, ist – in Verbindung mit Jahreszeit, Tageszeit, Wetter und den Möglichkeiten des Fotografen oder der Fotografin – unendlich groß: Wenn Du in Deinem gesamten Leben an jedem Tag nur in Dein begrenztes Gärtlein gehst und fortografierst, wirst Du nie zweimal dasselbe Bild machen! (… ja eine Variante des berüchtigten Flusses  … !)

Wenn man sich dies alles lange genug betrachtet, kommt man unweigerlich zu dem Schluss: das passiert nicht nur alles passiv mit den Pflanzen – was da passiert, folgt auch einem Plan der Pflanze, die also eine Absicht verfolgt!

  • Die Blätter sollen die Wassertropfen in Richtung auf den eigenen Wurzelkreis ableiten;
  • Die Atmungs-Schlitze auf der Blattunterseite sollen nicht überflutet werden;
  • Die Blüte will ihren Blütenstaub trocken halten;
  • Es sollen Insekten zum Trinken nahe der Blüte angelockt werden.


Bild 12: Blatt des Agapantus – leitet alles in seinen Wurzelstock – Quelle: fotosaurier


Bild 13: Akelei-Blatt – Sie hält ihr Blatt perfekt trocken – Quelle: fotosaurier


Bild 14: Blumenhartriegel – Trinkhalle für Insekten – Quelle: fotosaurier

Eine der offensichtlichsten physikalischen Einflussparameter ist die Oberflächenspannung, denn sie bestimmt sehr viele einzelne Eigenschaften der Tropfen:

  • Der Winkel, der sich zwischen der Blattoberfläche und der Tropfenoberfläche bildet,  bestimmt, wie der Tropfen uns als lichtbrechende „Linse“ erscheint: als perfekte Wasserkugel oder als flacher oberflächlich glänzender See.
  • Die Haltedauer der Tropfen an der Pflanze: bleibt der Tropfen fest sitzen bis er verdampft ist oder läuft das Wasser bei der leisesten Erschütterung ab?

In den nächsten beiden Bildern sehen wir eine Blüte, die ihre Strategie von der Phase der Knospe (hier viele fingerförmige Knospen als Rispe angeordnet!) zur Blüte drastisch ändert – es ist die Zuchtform der Montbretie:


Bild 15: Knospen-Rispe der Montbretie – zieht sich das Wasser an, wie einen Handschuh!  – Quelle: fotosaurier


Bild 16: Blütenrispe der Montbretie – hält ihr Pulver (=Blütenstaub …) trocken! – Quelle: fotosaurier

Die Knospen-Rispe zieht sich die Regennässe vollflächig über, wie einen Handschuh (sehr niedrige Oberflächenspannung). Die Blüte entfaltet sich mit hoher Oberflächenspannung zum Regenwasser und hält so die Tropfen auf sicheren Abstand zum duftenden Sekret in ihren Blütentrichtern.

Zu solchen Zwecken sind die Pflanzen Meister der Komposition von Oberflächentexturen und chemischen Molekülstrukturen, die die Wechselwirkung mit dem Medium H2O präzise nach ihren Bedürfnissen regeln.

Alle naturwissenschaftlichen Betrachtungen beiseite lassend, tauchen wir aber schließlich in einen schier endlosen Mikrokosmos der Formen, Farben und Lichtbeugungen ein – der schließlich in fast abstrakten Kompositionen hoher Suggestivkraft enden kann:


Bild 17: Rosenblüte nach einem Schauer – Quelle: fotosaurier


Bild 18: Rosenblüte nach leichtem Schauer – Quelle: fotosaurier


Bild 19: Tulpenblüte nach einem kräftigen Schauer  – die Blüte hat sich unter dem Gewicht der Tropfen zur Seite geneigt – Quelle: fotosaurier


Bild 20: Funkien-Blatt, vom Dauerregen „geflutet“ – Quelle: fotosaurier

Wassertropfen in der Natur können außer vom Regen auch von anderen Wetterphänomenen gebildet werden:

  • Tau
  • Nebelkondensation (nicht dasselbe wie Tau – sieht völlig anders aus!)
  • Rauhreif und schmelzendem Rauhreif

Das ist jeweils ein eigener Mikrokosmos – der jeder für sich neue Bilder schafft.


Bild 21: Hier zur Erinnerung ein Bild mit Tropfen aus Nebelkondensation aus meiner Altweibersommer-Serie – Quelle: fotosaurier – Links: Altweibersommer2016, Altweibersommer2017, Altweibersommer2020

Aber auch Regen ist nicht gleich Regen! Die Bilder, die ich bisher gezeigt habe, stammen meist vom frühen Morgen oder Vormittag – nach einem nächtlichen Schauer. Das war hauptsächlich bedingt durch das hiesige Wettergeschehen im Berlin-Brandenburger Raum.

Nach zwei Tagen ununterbrochenem Landregen (den hatten wir 30./31.10.2020) sieht der Tropfen-Kosmos völlig anders aus:


Bild 22: Rosenblätter nach Dauer-Landregen – Quelle: fotosaurier

Während nach kurzer Regendauer am Rosenblatt meist das Wasser völlig abperlt, und dann (kleinere) Tropfen am Blattrand nach unten anhängen, sitzen hier viele dicke Tropfen AUF dem Blatt. Den netten „Beifang“ (kleine Schnecke am Blattstiel, kaum größer als die Wassertropfen) nimmt man natürlich gerne mit: die habe ich erst auf dem Bild am PC entdeckt. So geht es auch oft mit Insekten, die sich unbemerkt und bereitwillig genau in der Schärfezone meiner Bilder aufhalten!


Bild 23: Rosenstängel nach Dauer-Landregen – Quelle: fotosaurier

Auch beim Stengel der Rose ein ähnliches Bild: während nach Regenschauern die Tropfen ausschließlich unten am Zweig hängen, sitzen sie hier fast ausschließlich oben auf dem Stengel. Bei dieser Rosensorte ist sogar das Blatt jetzt schon völlig durchnässt – das Wasser perlt gar nicht mehr ab.


Bild 24: Rosenknospen nach Dauer-Landregen – Quelle: fotosaurier


Bild 25: Ausschnitt von Bild 18: wenn man ganz genau hinsieht, haben die Netze der Baldachin-Spinne die 2 Tage Dauerregen überlebt!- Quelle: fotosaurier


Bild 26: „Regentropfenspieße“ bis zum Abwinken … mehr geht fast nicht in die Seggen-Blüte hinein – Quelle: fotosaurier

Wie ist meine Arbeitsweise bei dieser Art der Fotografie?

Alle Aufnahmen entstehen frei Hand – ohne Stativ. Das IBIS der Kamera hat einen wesentlichen Anteil am Erfolg – aber auch die benutzte Iso-Einstellung von 800, bei der ich die Dynamik des Sensors vollständig ausnutzen kann!

Nur relativ wenige meiner Regentropfenbilder entstehen im gezeigten Ausschnitt – sehr viele Bilder sind Ausschnitt-Vergrößerungen, teilweise bis dicht an die 100%-Darstellung. Sehr viele der gezeigten Kompositionen sind erst beim Durchmustern der 100 MP-Bilder entstanden. Die Nutzung der Fujifilm 100 MP-Kamera (GFX100) hat einen entscheidenden Anteil an der Entstehung dieser Bilder. Und der Zufall hat dadurch eine wichtige Rolle in meiner Regie bekommen! Ich will nicht verhehlen, dass das Durchforschen der mikroskopischen Welten in den 100 MP-Bildern ein Vergnügen ganz eigener Art ist.

Ich verwende dazu das Fujinon GF 120mm-Makroobjektiv  – und die Fähigkeit der Kombination von Digitalsensor und Objektiv, den Raum im Schärfebereich auch bei 100%-Vergrößerung noch sehr plastisch darzustellen, hat einen großen Anteil an dem Vergnügen! Die Kombination dieser Kamera und des Objektives nenne ich „mein Gartenmikroskop„.

Zum Schluss ein Tipp: es müssen nicht immer Myriaden von Wassertropfen sein, die ein beeindruckendes Bild erschaffen. Manchmal gilt auch: „Weniger ist mehr!“:


Bild 27: Ein einzelner Tropfen an einer Dahlienblüte! – Wow! – Quelle: Fotosaurier

Und noch ein Tipp:

Für Werbefotos wird im Studio selbstverständlich die Methode angewendet, die Pflanzen, Früchte (und Menschen?) mit der Sprühflasche anzusprühen. Ich kann Hobby-Fotografen nur davon abraten: man sieht den Unterschied zu natürlichem Regen, Tau etc. (ich verrate nicht, woran man es sieht! Sie kommen sicher selbst darauf …).

Ich mache das nicht … ebenso wie ich nie mit einem Blitz arbeite – nur mit natürlichem Tageslicht!

Aphorismus des Tages: Der Fotograf kann das Wetter nicht ändern – aber er kann etwas draus machen (fotosaurier)

Copyright fotosaurier, Herbert Börger, 10. November 2020




Katadioptrische Foto-Objektive – Teil III

Teil III: Katadioptrische Foto-Objektive von 1946 – heute.

(Teil I finden Sie hierTeil II hier.)

Die Erkenntnisse aus Teil II führen zu dem Schluß, dass für die ab den 1950er Jahren aufkommenden katadioptrischen Foto-Objektive aus den vielfältigen, bereits für Astro-Anwendungen bekannten „katadioptrischen Dialyten“ (Brachymediale) abgeleitet wurden, von denen einige schon bis zu 150 Jahre bekannt waren und unter denen Maksutov eine spezielle Variante ist.

Eine kurze Geschichte der Katadioptrischen Foto-Objektive:

Mit dem starken Aufkommen der Spiegel-Linsen-Objektive in den 1960-70er Jahren bildeten sich spezielle Konstruktionsmerkmale heraus, die in dieser Form bei astronomischen Fernrohren meist nicht zu finden sind:

a) Außer der Tatsache, dass die Foto-Optiken sehr robust und hermetisch dicht gebaut sind, wurde zunehmend auf die Bohrung im Primärspiegel verzichtet! Das bedeutet, dass die Strahlen, die vom Sekundär-Spiegel zurück geworfen werden, nicht mehr durch eine Öffnung im Hauptspiegel zur Kamera bzw. Filmebene gelangen, sondern durch einen unverspiegelten zentralen Bereich der Spiegelfläche durch das Glas des Spiegelkörpers treten.

Das bedeutet, dass der Innenbereich der Optik zwischen den beiden Spiegeln noch besser hermetisch abgeschlossen ist. Es bedeutet gleichzeitig, dass der zentrale Bereich des Spiegelkörpers auch noch als brechendes Linsenelement im Strahlengang einbezogen ist. Dieser Bereich bildet dann oft zusammen mit 1-3 weiteren Linsen den Sub-Apertur-Korrektor im Strahlengang nach dem Sekundärspiegel. Er muss aus Linsen-Glas allerhöchster Güte bestehen, da dieser Bereich des Hauptspiegels – im Falle eines Mangin-Spiegels – dreimal von jedem Lichtstrahl durchlaufen wird!

b) Immer häufiger treten nach 1965 Mangin-Spiegel auf, was ja der Grundkonfiguration des Hamilton-Teleskopes entspricht. Zuerst finden sich Primärspiegel als Mangin-Typ, bald auch beim Sekundärspiegel bzw. in beiden Positionen gleichzeitig oder auch nur beim Sekundärspiegel. Wie wir oben gesehen haben (Hamilton-Teleskop) ist der Mangin-Spiegel bereits ein Grund-Element des kadadioptrischen Dialyts – für sich genommen ist er meines Wissens nie als Teleskop oder Astrokamera verwendet worden.

Bild 1: Mangin-Spiegel – Quelle: Wikipedia – Autor: not known –

Neben der Wirkung als Element der optischen Rechnung liefert der Mangin-Spiegel zwei weitere Vorteile für das Foto-Objektiv:

  • Die an der polierten Glasfläche anliegende reflektierende Spiegeloberfläche ist in der Mikro-Oberflächenstruktur wesentlich glatter als eine aufgedampfte Aluminium-Schicht auf ihrer „offenen“ Seite, die auch noch mit einer transparenten Schutzschicht (meistens Si02) überzogen werden muss.
  • Die Verspiegelungs-Schicht ist gegen den Zutritt von korrosiven Gasen, Feuchtigkeit etc. perfekt geschützt und behält langfristig seine uneingeschränkte Wirkung. Dies alleine wäre schon ein ausreicheder Grund, um diese Bauweise zu bevorzugen!

c) Foto-Objektive katadioptrischer Bauart benötigen zur Abschirmung gegen Falschlicht rohrförmige Blenden um den Zentralen Strahlen-Durchlass im Zentrum des Primärspiegels (nach vorne in Richtung des Sekundärspiegels) bzw. um den Sekundärspiegel herum (in Richtung Hauptspiegel), um die Kamera vor einfallendem Falschlicht zu wchützen. Auf dem folgenden Linsenschnitt sind die Tubus-Blenden und das Problem des Falschlichtes gut zu erkennen:


Bild 2: Linsenschnitt mit Abschirmtubus-Blenden gegen „Falschlicht“am Olympus Zuiko Reflex 500mm f/8 (in diesem Bild ist der Lichteintritt rechts!) – Quelle: Olympus Produktbeschreibungs- und Spezifikationsdatenblatt zum Objektiv

An diesem Bild kann man gut erkennen, dass ohne diese beiden Blenden Lichtstrahlen durch die ringförmige Apertur-Öffnung (rechts) direkt und ohne Reflexion an den Spiegeln auf das Zentrum des Hauptspielgels und damit auch in die Kamera gelangen könnten! Eine Gegenlichtblende vor dem Objektiv kann das nur dann sicher verhindern, wenn die Gegenlichtblende extrem lang wäre – was natürlich dem Objektiv-Konzept widerspricht …

Die Existenz dieser rohrförmigen Blenden im zentralen Bereich hat Auswirkungen auf die sog. Obstruktion – also die Abschattung der Lichtstrahlen im Zentrum der Apertur:

Bei Strahlenbündeln, die vom Bildfeldrand schräg in die Optik einfallen, werfen die Tubusblenden einen Schatten auf den Hauptspiegel. In der Folge ist nicht mehr die gesamte Ringförmige Spiegelfläche „aktiv“. Sie ist in der Breite des Blendentubus unterbrochen. Man kann das bei geeigneter Bildstruktur an den außerfokalen Apertur-Ringbildern von Lichtreflexen sehen, wie folgend in dem absichtlich unscharf gestellten Aufnahme des Hausdaches gut zu erkennen ist:


Bild 3:Tubusblenden-Schatten“ bei den außerfokalen Unschärferingen im Randbereich mit dem Olympus OM Zuiko Reflex 500mm f/8: unten-links und -rechts sieht man die kleinen „Packman-Ringe“ – die Öffnung weist zum Bildzentrum hin. – Quelle: fotosaurier

d) Die große Korrektor-Linse in der Lichteintritts-Apertur dient immer auch gleichzeitig als Tragstruktur für den Sekundärspiegel. Wie im Teil I ausführlich beschrieben wurde, führt die „Obstruktion“ durch den Sekundärspiegel im Strahlengang zu einer Kontrastverringerung des Beugungsbildes 1. Ordnung. Aber wenigstens werden durch das Fehlen von Tragspinnen die dadurch verursachten Beugungs-Spikes in den Bildern einer Punktlichtquelle vermieden, wie sie beim normalen Newton und Cassegrain auftreten.

Meine persönlichen MEILENSTEINE katadioptrischer Foto-Objektive (CATs):

Vorbemerkung: die Einordnung bestimmter Objektive als „Meilenstein“, die ich hier vornehme, ist rein SUBJEKTIV und basiert auf meinem – begrenzten – Wissen bzw. meiner Erfahrung. Mir ist bewusst, dass andere Fotografen und Beobachter zu etwas anderen Schlüssen kommen können, die ihrer eigenen Erfahrung entsprechen.

An dieser Stelle möchte ich noch einmal ins Gedächtnis rufen, dass in den 1950er bis 70er Jahren gegenüber „langen“ Teleobjektiven (>200mm Brennweite) nicht nur Kompaktheit (Baulänge) und geringes Gewicht für die „CATs“ sprach, sondern vor allem die Freiheit von Farbfehlern (Chromatische Aberration, „CA“) – im Verhältnis zum Preis! Es gab zwar in den 1970ern bereits die ersten farbreinen Telekanonen mit Fluorid-Linsen – aber zu einem extrem hohen Preis unter Verwendung eines sehr empfindlichen Materials. Den Preis konnten/wollten sich sicher wenige Amateurfotografen leisten. So bin ich überzeugt, dass die „Blüte“ der katadioptrischen Teleobjektive hauptsächlich vom Amateur-Segment getragen war.

Darüber, warum die katadioptrische Objektivbauform fast völlig wieder verschwunden ist,  werde ich am Ende dieses Artikels einige (begründete) Vermutungen anstellen.

Hier nun mein kurzer Überblick auf die Zeitskala und die Entstehungsgeschichte geschlossener katadioptrischer Systeme, die als Foto-Objektive geeignet waren oder spezifisch dafür gebaut wurden.

Ich führe hier auch die mir bekannte Grundlagenentwicklungen ebenfalls im Zeitstrahl mit auf, damit die zeitliche Dimension mit einem Blick sichtbar wird.

Ich führe dann Foto-Objektive auf, die aus meiner Sicht Meilensteine der Entwicklung solcher Optiken darstellen. Dies ist keine vollständige Beschreibung dieses Objektiv-Segmentes! Ich versuche derzeit Informationen über alle jemals gelieferten Photo-CATs zu sammeln und hoffe in einigen Monaten eine fast vollständige Liste veröffentlichen zu können.

Fast alle bekannten katadioptrischen Teleobjektive wurden für das Kleinbildformat gerechnet. Einige wenige zeichneten Mittelformat 6×6 oder 6×7 aus: Carl Zeiss Jena Spiegelobjektive 500mm und 1.000mm, Kilfitt 500mm und 1.000mm und Pentax 6×7 1.000mm f8 – soweit mir bekannt ist.


Grundlagen-Erfindung (Astronomie) des Katadioptrischen Dialyts (auch „Brachymedial“ genannt) durch Hamilton und darauf folgend eine  große Reihe von Varianten und Weiterentwicklungen.

Hier der Link zu Hamiltons GB-Patent Nr. 3781.

Bis in jüngerer Zeit hat eine italienische Firma tatsächlich noch Hamilton-Teleskope/-Kameras für astronomische Zwecke geliefert (Ceravolo).


Grundlagen-Erfindung (Astronomie) der Schmidt-Korrektor-Platte – daraus entstanden Schmidt-Kamera und Schmidt-Cassegrain-Teleskop


Grundlagen-Erfindung (Astronomie) des Maksutov-Korrektor-Meniskuslinse – daraus entstanden das Maksutov-Cassegrain-Teleskop – genau betrachtet ist es aber eine Sonderform des katadioptrischen Dialyts.

ab 1945

Maksutov-Cassegrain 3,5″ f/12-Teleskope – Lieferung großer Stückzahl des Teleskops an sowjetische Schulen, gebaut (anfangs) vermutlich in Nowosibirsk. Wenn Sie wissen wollen, wie das Schul-Teleskop aussah, folgen sie bitte diesem Link zu einer sehr kompakten Biografie Maksutovs auf Prabook. Dort sehen Sie ein Bild von D. Maksutov mit „seinem“ Schul-Teleskop vor ihm auf dem Schreibtisch. Mit ähnlicher Spezifikation wurde es in Polen als „PZO“ hergestellt und in der DDR von Zeiss als „Telementor„. Diese Geräte wurden auch (da sie Devisen brachten!) in den Westen verkauft.

Bemerkenswert ist, dass die Motivation, ein extrem robustes und haltbares sowie wartungsarmes Fernrohr für Schulen zu schaffen, bei Dimitri Maksutov zu der ursprünglichen Idee für das Meniskus-Tesleskop-Design führte. Ich sehe darin ein Beispiel, dass auch das Streben nach Gemeinwohl zu hervorragenden Innovationen führen kann!

In diesem Link zu „“ fand ich weitere interessante Fotos des polnischen PZO-Instruments.

ab 1954

QUESTAR Maksutov-Cassegrain-Teleskop 3,5″ (in Großserie gefertigt bis heute)

Klassisches Maksutov-Cassegrain, Brennweite 1280mm f/14.4 (Spezifikation ab 1961) – wurde und wird auch als Teleskop-Tubus („Field-Model“ oder „Birder“) mit Okular- oder Kameraanschluss geliefert.

Ein Kult-Klassiker der Amateur-Astronomie. Aber auch die NASA soll einige beschafft haben …

Bild 4: Questar-3,5″-Teleskop mit ausgezogener Taukappe – Quelle Wikipedia, Autor:Hmaag –

ab 1936 bis in die 1960er Jahre

wurden mindestens in Deutschland (Zeiss), Japan (Nikon) und Russland (GOI) und USA (Kodak) große semi-transportable (meist katadioptrische) Spiegelobjektive für militärische und satellitengestützte Anwendungen entwickelt. Diese waren ausschließlich vom Maksutov-Typ und hatten Brennweiten von 1.800mm – 8.200mm. Viele Informationen dazu gibt es im Übersichtsartikel von Marco Cavina in diesem Link. Auf diese umfangreichen Erfahrungen konnten sich die Optik-Unternehmen dann nach dem 2. Weltkrieg bei der Entwicklung von katadioptrischen Wechselobjektiven für Spiegelreflex-Kameras stützen.

vor 1958

Erste Maksutov-Cassegrain-Teleobjektive für SLR von LZSO, Sowjetunion: MTO 1.000mm f/10.5  und MTO 500mm f8 – erhielten eine Goldmedallie auf der EXPO in Brüssel 1958.

Ich weiß nicht, wann genau diese Maksutov-Cassegrain auf den Foto-Markt gebracht wurden. Es muss noch unter der strengen Überwachung von Dimitri Maksutov selbst gewesen sein, der ja bis 1964 lebte. Gibt es Leser, die da weiter helfen können?


Bild 5a: MTO-500mm f/8 – Quelle: fotosaurier


Bild 5b: MTO-1.000mm f/10 – Quelle: fotosaurier

Das archaische Design und die solide Bauweise führten dazu, dass die Optiken (bis heute) von Fotoamateuren liebevoll als „Russentonnen“ bezeichnet werden. Herstellerbezeichnungen waren und sind MTO, Arsenal, Rubinar. Nicht immer waren die Optiken leider in der Qualität konstant, was oft an verspannt eingebauten Spiegeln gelegen haben soll. Ein Bericht dazu (Dr. Wolfgang Strickling) finden Sie hier.

1959/1961Nikon bringt nach den russischen MTOs bereits 1959 sein erstes CAT mit ehrgeizigen Daten auf den Markt, das Reflex-Nikkor 1.000mm f/6.3 – und bereits 1961 folgt ein Reflex-Nikkor 500mm f/5. Ab den frühen 1970er bis in die 2000er Jahre bietet dann Nikon kontinuierlich das „Reflex-Nikkor-Trio“ 500 f/8 + 1.000 f/11 . 2.000 f/11 an. Viele Details findet man in dem Artikel von Marco Cavina – für die Liebhaber der italienischen Sprache! Die 2.000mm f11 wurden demnach alle von 1971 bis 1975 in zwei Versionen gefertigt. Das eklärt wohl zur Genüge, warum Ihnen das 2.000er CAT so selten in „freier Wildbahn“ begegnet.


Bild 6: Reflex-Nikkor C 500mm f/8 – Quelle: fotosaurier

1961Carl Zeiss Jena

stellt das katadioptrische „Spiegelobjektiv“ 500mm f4,0 auf der Leipziger Messe vor (Entwickelt ab 1955 von Dr. Harry Zöllner, W. Dannenberg. (Kurze Zeit später kommt auch ein Spiegelobjektiv 1.000mm f5,6, die sog. „Stasi-Kanone“, hinzu). Die Optiken sind für Mittelformat 6 x 6 gerechnet und geliefert worden!

Frei zugängliche Darstellungen von Linsenschnitt, Auflösung und MTF-Kurven stehen mir bisher zu diesen Optiken nicht zur Verfügung. Allerdings gibt es einen fabelhaften synoptischen Artikel von Marco Cavina, in dem das Jena-Spiegelobjektiv 500mm f/4.0 und das Mirotar f/4.5 im Detail ausführlich beschrieben und verglichen werden.

Bereits 1941 hatten bei Zeiss die Konstrukteure Robert Richter und Hermann Slevogt ein CAT-System (Richter-Slevogt-Teleskop) entwickelt und angemeldet, das dem kurz vorher in GB angemeldeten „Houghton-Teleskop“ (s. Teil II) ähnelt. Wahrscheinlich wussten beide Gruppen damals im Krieg nichts voneinander.

Auf diese Entwicklungen von 1941 geht offensichtlich dieses Carl Zeiss Jena-Spiegelobjektiv zurück.

Cavina äußert in seinem Artikel die Vermutung, dass die optische Leistung des Jena-Objektivs nicht an das folgend beschriebene, kurz danach heraus gekommene Objektiv von Zeiss Oberkochen heran kommt, da es vermutlich als IR-Fernobjektiv für Aufnahmen auf IR-Schwarzweißfilm entwickelt wurde.

In dem Blog „Zeissmania“ (Teil II) finden sich einige Aufnahmen,die der Autor selbst mit dem Zeiss Jena 1.000 f/5.6 gemacht hat (Website der Burgenländischen Amateurastronomen BAA).

1963Zeiss Oberkochen (West)

stellt das MIROTAR 500mm f/4,5 vor und fertigt 200 Exemplare für Contarex.  Zeiss-Konstrukteure sind Helmut Knutti und Alfred Opitz. Später wird noch einmal ein kleines Los speziell mit dem Kyocera-Contax-Anschluss (c/y) gefertigt. Etliche nagelneue Contarex-Objektive wurden (lt. Marco Cavina) auch im Werk auf  c/y umgerüstet. Ab 1975 liefert Zeiss ein MIROTAR 1.000mm f5,6 und fertigt 20 Exemplare. (Alle Mirotare sind für Kleinbild-Format gerechnet.)

Mirotar 500mm f4,5_strahl

Bild 7: Linsenschnitt des Zeiss Mirotar 500mm f4.5 – Maksutov-Design mit zwei Korrektur-Menisken aber noch kein Mangin-Spiegel – Quelle: Datenblatt Fa. Zeiss

Spezifikations-Datenblätter von Zeiss mit Linsenschnitten finden Sie hier und hier.

Dies ist ein Vertreter der „Maksutov-Fraktion“, noch mit durchbohrtem Primärspiegel.

Zeiss verwendet hier noch keinen Mangin-Spiegel! Für das benötigte große Bildfeld des Kleinbild-Formates und dem großen Öffnungsverhältnis von f/5.6 ist ein einfacher Maksutov-Meniskus allerdings nicht ausreichend als Korrektor bei höchsten Ansprüchen. Daher verwendet Zeiss davor noch einen zweiten (umgekehrten) und sehr dicken Meniskus – eine Lösung, die auch Maksutov selbst für die großen astronomischen MAK-Kameras in Chile und im Südkaukasus bereits verwendet hatte.

Das Mirotar 500mm f4.5 gilt als Referenz-CAT im Kleinbild-Bereich. Im Artikel von Marco Cavina ist die MTF-Kurve – im Vergleich mit anderen APO-Objektiven und dem 500mm f/8 von Zeiss – dargestellt: sie ist allen anderen Optiken weit überlegen.

vor 1964Canon

stellte für die Olympiade in Tokyo drei CATs der Superlative zur Verfügung, die wohl weniger in den Amateurfotografen-Sektor passten, aber umso bemerkenswerter sind:

  • Canon TV-800 f3.8
  • Canon TV-2.000mm f11
  • Canon TV- 5.200mm f14

Sie haben richtig gelesen – kein Druckfehler! Ich habe keine Ahnung, in welchen“Stückzahlen“ Canon diese Optiken gefertigt hat. Sie wurden also offensichtlich mit Vidicon für das Fernsehen eingesetzt. Hier findet man in einem weiteren Artikel von Marco Cavina (auf Italienisch) mehr Informationen darüber.

1965 – Der US-Photodistributor „Spiratone

beginnt ein Maksutov-Cassegrain-Objektiv 500mm f/8 – gefertigt bei LZOS in der Sowjetunion – im Westen zu liefern. Es bekommt in Fotozeitschriften sehr gute Testergebnisse. Später (jedenfalls VOR 1983) kommt ein katadioptrisches Spiegelobjektiv 300mm f5.6 hinzu.

1965 bis 1980 – dies ist die Periode,

in der JEDER Kamera- oder Objektiv-Hersteller ein oder mehrere Foto-CATs heraus brachte.

Binnen kürzester Zeit war es Standard, dass jeder Original-Hersteller (Nikon, Canon, Pentax, Minolta, Yashica) mindestens zwei CATs in seinem Programm anbot: alle hatten ein 500mm f/8 CAT zu bieten, sowie am langen Ende entweder 800mm f/8 (Minolta) oder 1.000mm f/10 oder f/11. Es kamen auch einige 1.200mm- und  2.000mm-Optiken auf den Markt. Wie schon gesagt, arbeite ich an einer möglichst vollständigen Übersicht. Pentax  brachte zusätzlich zu seiner Kleinbild-Linie ein Reflex Takumar 1.000mm f/8 für Mittelformat (die Pentax 67) heraus. Das gab es meines Wissens sonst nur bei Zeiss Jena und Kilfitt.

Eine Ausnahme bildete Olympus, wo man zögerte um erst 1982 ein einziges aber sehr kompaktes Zuiko Reflex 500mm f/8 heraus zu bringen (s.u.).

Die Leica CATs „MR-Telyt-R“ waren Minolta-Objektive in einem Leica-Design.

Die „echten“ Fremdobjektiv-Hersteller („3rd-party-lenses“) reagierten ebenfalls sehr schnell: anscheinend allen voran SIGMA, die sehr früh (Datum?) ein super-lichtstarkes 500mm f/4.0 heraus brachten. Ich fand einen Bericht eines amerikanischen Fotofreundes, der diese Optik in einem völlig  verwahhrlosten Zustand  fand und mit seinen eigenen Bordmitteln „aufarbeitete“ (Respekt!). Schließlich stellte er fest, dass es nicht so schlecht gewesen sein kann.

Sigma hat dann über die Jahrzehnte den größten „Zoo“ von katadioptrischen Brennweiten auf den Markt gebracht. Dabei auch die eher ungewöhnlichen Brennweiten 400mm und 600 mm. Ich hatte einmal ein 600er Sigma-CAT, das mich aber nicht voll überzeugen konnte.

Dabei waren natürlich auch Tokina und Tamron mit eigenen katadioptrischen Designs – wobei man feststellen muss, dass die 1979/81 erschienenen Tamron 500mm f/8 und 350mm f/5.6 an die Spitzengruppe der (späteren!) Objektive von Olympus und Zeiss heran kamen. Das Tamron 500 f/8 CAT war sogar noch etwas kürzer und leichter als das 1982 erschienene Olympus 500 f/8. Bild und Linsenschnitt hier auf der Adaptall-2-Website. Beim 350er Tamron ist die aufschraubbare Gegenlichtblende (unbedingt benutzen!) praktisch genau so lang, wie das Objektiv selbst.

Makinon war ein weiterer echter japanischer Fremdobjektiv-Hersteller mit meist recht guten Produkten.

In Europa/Deutschland gab es nun ab 1972 keinen ernst zu nehmenden SLR-Hersteller mehr. Es gab allerdings noch berühmte Fremdobjektiv-Hersteller, allen voran Kilfitt/Zoomar. Legendär ist das Kilfitt-Zoomar Sports-Reflectar 500mm f/5.6 (Ende der 1960er), detailliert beschrieben hier auf der Pentaconsix-Website – und hier das 1970 vorgestellte Kilfitt/Zoomar Sports-Reflectar 1.000mm f/8 beide gerechnet für Mittelformat und mit dem Kilfitt WE-Adaptersystem auch an vielen Kameras verwendbar.

Eine unübersehbare Menge von Handelsmarken boten eine große Zahl von CAT-Varianten sehr billig an. Meines Wissens war 1965 zeitlich der früheste Spiratone, USA (siehe oben) – bei dem man auch wusste, wer der Hersteller war (MTO bzw. LZSO in Russland). Bei den anderen habe ich keine Ahnung, wer der Hersteller gewesen sein kann. Mir ist – ausser dem besagten Spiratone – keines bekann, das durch eine besonders hohe optische Qualität aufgefallen wäre.

1975 VivitarSeries1 Solid CAT 800mm f11 und 600mm f8


Bild 8: Vivitar Series 1 Solid Cat 800mm f/11 an der Sony A7RIV (ohne Gegenlichtblende)- Quelle: fotosaurier

Anfang der 1970er Jahre las ich über ein neu veröffentlichtes Patent von Perkin Elmer über eine sogenannte „Solid Catadioptric Lens“ – d.h. ein Spiegellinsen-Objektiv, das quasi „aus einem einzigen Glaszylinder“ bestehen sollte (gelesen möglicherweise bei Herbert Keplers „Kepler on the SLR“ in Modern Photography?):


Bild 9: Skizze aus der Patent-Anmeldung Perkin Elmer „Solid-Cat“ von 1967, erteilt 1970. Quelle: US-Patentanmeldung US3547525A

Diese Optik sollte extrem kurz bauen – ich war begeistert. Einige Jahre später erfuhr ich schließlich in der „Modern Photography“, dass dieses Objektiv als Vivitar Series 1 Optik 800mm f/11 tatsächlich am Markt erschienen sei.


Bild 10: Linsenschnitt VivitarSeries1 Solid-Cat 800mm f/11. Er liegt erstaunlich nahe am ursprünglichen Entwurf! – Quelle: Patent Perkin Elmer Patent Patent application

Da war sofort klar, dass ich das irgendwann haben müßte – was dann noch einige Jahre gedauert hat… Über die Geschichte der Vivitar Series 1-Optiken wird irgendwann separat zu berichten sein. Für uns waren diese Objektive damals in den 1970er Jahren eine Offenbarung – und die meisten davon besitze ich noch bis heute!

Die beiden Solid-Cats (600mm und 800mm) bauen extrem kurz – sind aber deutlich schwerer als die sonst gängigen CATs am Markt.

Erst Jahrzehnte später stieß ich dann auf die spezielle Geschichte dieses Objektivs, das mich so fasziniert hat. in den Archiven der „SPIE“ findet sie sich in Form eines Interviews mit dem Konstrukteur dieses Objektivs, Juan L. Rayces (1918 – 2009). Darin enthalten auch ein Foto des Konstrukteurs mit seinem Objektiv auf dem Stativ – am belebten Strand! (Heute wohl nicht mehr denkbar…)

Auch Perkin Elmer lieferte Exemplare diese Objektivs unter der eigenen Marke (und auch Spezialausführungen an die NASA).


Bild 11: Solid Cat-Ausführung 800mm f/11 unter Perkin-Elmer-Eigenmarke – Quelle: fotosaurier

Was unter der Marke „Vivitar Series 1“ wirklich geschah: die Fertigung lief 1975 an – wurde aber nach 3 Monaten wieder gestoppt, weil Vivitar feststellte, dass es für ein Amateur-Objektiv zu teuer war. Daher gibt es wohl tatsächlich nur eine relativ geringe Stückzahl von Objektiven weltweit (obwohl es damals heftig – auch in Deutschland – beworben wurde).

1978Minolta RF Rokkor 250mm f5.6


Bild 12: Linsenschnitt Minolta RF Rokkor-X 250mm f/5.6 – Quelle: Datenblatt Minolta

In Beschreibungen werden die Mangin-Spiegel oft als „Innovativer Schritt“ an sich hervorgehoben – was ja, wenn man von katadioptrischen Dialyt (von 1814!) ausgeht, nicht richtig ist. Auch ist die Bezeichnung eines „Rumak“, die ich schon gelesen habe, nicht wirklich zutreffend: Rumak würde einen Maksutov-Typen bezeichnen, der – nach Rutten als Rutten-Maksutov benannt – nicht den verspiegelten Fleck auf der Rückseite des Meniskus als Sekundärspiegel nutzt, sondern einen auf ein Podest auf dem Meniskus montierten Cassegrain-Sekundärspiegel. Aber diese Optik ist überhaupt kein Maksutov-Typ.

Diese Optik hat einfach ein hervorragendes Brachymedial-Design – insbesondere unter Berücksichtigung der kurzen Brennweite und extrem kurzen Baulänge von 58mm (ohne Gegenlichtblende).

Wie bei allen CATs ist die Benutzung der Gegenlichtblende dringend empfohlen!


Bild 13: Minolta RFx Rokkor 250mm f/5.6 (ohne Gegenlichtblende) – Quelle: fotosaurier


Bild 14: Größenvergleich RF Rokkor zu lichtstarkem Normalobjektiv (Olympus OM 50mm f/1.2 – das ist aber das kompakteste unter den f/1.2-Normalobjektiven. Mein heutiges Sony GM-50mm f/1.4 hat das ungefähr 3- bis 4-fache Volumen des RF Rockor …) – Quelle: fotosaurier

Das RF-Rokkor 250mm f/5.6 eröffnete damit Ende der 1970er Jahre noch einmal ein neues Brennweiten-Segment für katadioptrische Objektive mit einem wirklich großen Wurf in jeder Hinsicht – optisch wie geometrisch! Vielleicht lag es auch in der Luft? – umgehend tummelten sich in diesem Segment die Fremdobjektiv-Hersteller („Third-Party“) aber interessanterweise folgte keiner der großen Kamerahersteller Minolta in dieses Segment (meines Wissens …). Ich halte den Brennweitenbereich (250-350) für sehr sinnvoll, da  der „Durchschnitts-Fotoamateur“ mit dem Mmanuell-Fokussieren von 500er-Objektiven schon mal leicht überfordert ist – siehe meine Bemerkungen am Ende des Artikels.

Die Brennweite 250mm hat sich dabei nur einer der Fremdobjektivhersteller mal „zugetraut“. Vertrieben wurde das Produkt wohl nur über Handelsmarken – in Deutschland als „Berolina 250mm f/5.6“ bekannt, anderswo auch unter „Focal“ etc. Mir ist nicht bekannt, wer da der Konstrukteur bzw. Hersteller war. Die optische Qualität ist eher bescheiden und die Optik ist auch wesentlich größer als das RF Rokkor (fast so lang wie das Olympus Reflex 500mm f/8).

Die anderen Optiken lagen alle im Bereich von 300mm (f/4.5 bis f/6.3) oder 350mm f/5.6 (Tamron – sehr gute Optik!) – dabei war sogar ein russischer Maksutov-Typ (Rubinar) und auch Astro-Hersteller wie Celestron haben das probiert. Auch die Handelsmarke Spiratone war hier wieder dabei (viel gelobt!).

1978/79Celestron (Schmidt-Cass.) 750 f/6.3 und Questar (MAK) 700mm f/8

Dies sind Versuche, aus dem Astro-Geräte-Segment heraus reine Foto-Teleobjektive anzubieten (was ja mit dem russischen MTO früher schon mal sehr gut gelungen war – bis heute!).

Celestron  (1978) war das einzige reinrassige Schmidt-Cassegrain-Objektiv, das an den Foto-Markt gebracht wurde. Es verschwand ab 1986 wieder.

Das Questar-Gerät (1979) war als „lichtstarker Maksutov-Typ“ auch nicht lange am Markt.


Bild 15: CAT-Teleobjektiv „Celestron 700“ 700mm f/8 – Quelle: fotosaurier

Qualitativ hochwertig und hervorragend gebaut – aber der Foto-Markt funktioniert eben anders als die „Astro-Nische“.

1982 – Olympus OM Zuiko Reflex 500mm f/8


Bild 16: Das kompakte Olympus Zuiko Reflex 500mm f/8 an der „zierlichen“ OM4Ti (Gegenlichtblende eingeschoben) – Quelle: fotosaurier

Ich hebe dieses 500er CAT besonders hervor, weil es praktisch keine Fehler hat – außer dem Fehlen des Stativanschlusses, der allerdings dem Olympus-Konzept widersprochen hätte! Sein auffälligster Vorteil ist der hervorragende Bildkontrast, der das (sehr feinfühlige!) Fokussieren leicht macht – selbst ohne Fokusvergrößerung an der digitalen Systemkamera. Das Bild „springt“ geradezu in die Schärfezone. In mittleren Entfernungen ist die Bildstruktur („Rendering“) – auch des Hintergrundes! – sehr schön. Auch die ausziehbare Gegenlichtblende ist sehr praxisgerecht.


Bild 17: Beispiel des schönen Renderings beim Olympus OM Reflex Zuiko 500 f/8 – Quelle: fotosaurier


Bild 18: Linsenschnitt Olympus OM Reflex Zuiko 500mm f/8 (Lichteintritt von rechts! – Gegenlichtblende eingeschoben) – Quelle: Datenblatt Olympus

Zusammen mit dem Minolta AF Reflex 500 und dem fast 20 Jahre später erschienenen Mirotar 500mm f/8 ist es das beste 500er-CAT das ich persönlich und praktisch kenne. Beide Spiegel sind Mangin-Spiegel. Das Auffälligste ist, dass hier ALLE optischen Elemente in nur zwei Gruppen um die beiden Spiegel zusammengafasst sind! Es ist das CAT mit der geringsten Zahl von Glas-Luft-Flächen. Ich vermute, dass dies ein Teil des Geheimnisses des hervorragenden Bildkontrastes ist.

Bei meinen jüngsten Messungen mit einer Nyquist-Frequenz des Sensors von 3.168 LP/BH messe ich beim Zuiko-Reflex ca. 1.500 LP/BH (entsprechend 125 Linien/mm) in der Bildmitte – in der äußersten Ecke bei ca. 860 LP/BH. Ich gebe die Auflösungswerte für 30% Kontrast an (wie meistens üblich …) Für die damalige analoge Fotografie waren das Werte, die noch über der praktischen Filmauflösung lagen (zumal mit ISO 400-Filmen – oder noch höheren ISO-Werten!).

Deutlich kompakter als diese Optik ist meines Wissens nur das Tokina 500mm f/8 – aber das spielt in der optischen Qualität eine Liga darunter. Auch das Tamron 500mm f/8 ist etwas kürzer – man muss aber eine Gegenlichtblende aufschrauben, die fast so lang ist wie das Objektiv selbst!

1982/83Vivitar Series 1 450mm f4.5

Hier ist die Datierung ganz sicher:  Oktober 1982 wurde das Objektiv auf der Photokina in Köln vorgestellt. Ab 1983 wurde es meines Wissens ein Jahr lang gefertigt. Es gibt dazu auch noch einen 2-fach-Telekonverter, der speziell für die Optik gerechnet ist und direkt am T2-Gewinde angeschlossen wird.

Diese Optik hat nichts mit den früher gelieferten Vivitar Series 1 „Solid Cat“ zu tun!(Das war vereinzelt angenommen worden …)

Dies ist die wohl (bisher) exotischste katadioptrische Foto-Optik, die es tatsächlich an den Markt geschafft hat! – Eindeutig ein Fall für  die Rubrik „My Crazy Lenses“ – demnächst hier in diesem Blog

Das Design stammt von der Optik-Designfirma OPCON Associates, die der ehemalige Perkin-Elmer Mitarbeiter Ellis Betensky 1969 mit zwei anderen Partnern (Melvin Kreitzer und Jacob Moskovich) 1969 gegründet hatte – und die bis heute existiert (seit 1996 ohne Betensky).


Bild 19: Vivitar Series 1 450mm f4.5 (Länge 150mm – ohne die Gegenlichtblende) an der Olympus OM – Quelle: fotosaurier

Nach intensiver Suche habe ich schließlich das Patent für dieses katadioptrische Objektiv gefunden: US-Patent 4523816 angemeldet 1983 für Vivitar. Anders als oft zu lesen, ist als Erfinder Melvin Kreitzer eingetragen und nicht nicht Ellis Betensky. Die Bilder „Fig.3 und Fig.4“ sind durch klicken auf „Full Pages“  (am linken Rand) einzusehen.


Bild 20: Grobe Linsenschnitt-Skizze aus dem US-Patent 4523816 für das Vivitar Series 1 450mm f/4.5 – entspricht sicher nicht in allen Details dem endgültig hergestellten Objektiv – es fehlt z.B. die nach vorne abschließende dünne Planglasscheibe (s. FIG-4) – Quelle: US-Patent 4523816

Der EXOT besitzt vier höchst innovative Besonderheiten:

a – Der (sehr dicke!) Front-Korrektor L1 besteht laut Spezifikations-Claims aus PMMA-Kunststoff („Acryl-Glas“).

b – Der Korrektor L1 hat auf der Vorderseite eine asphärische Fläche! … also eine Art „verkappte-Schmidt-Platte“?

c – Das System besitzt eine Innenfokussierung durch Verschiebung der Korrektor-Linsengruppe G2. Dabei ändert sich die Brennweite des Objektivs in Naheinstellung.

d – das vordere Kunststoff-Korrektorelement L1 ist an der Objektiv-Vorderseite durch eine dünne planparallele Glas-Scheibe geschützt (fehlt in Fig.3 – angedeutet nur in Fig.4 des Patentes).

Weitere Informationen zu diesem Objektiv im Artikel in der Reihe „My Crazy Lensesdemnächst.

1989Minolta AF Reflex 500mm f/8


Bild 21: Minolta AF Reflex 500 an der Sony A7RIV (mit Gegenlichtblende) – Quelle: fotosaurier

Minolta AF 500f8

Bild 22: Minolta Autofocus 500mm f/8 – Quelle Minolta Objektiv-Spezifikation

Minolta hat damit – 4 Jahre nach der Einführung der AF-SLR als erster weltweit und bis heute einziger Hersteller – etwas gemacht, was eigentlich als „unmöglich“ galt: Funktion eines zuverlässigen Autofokus bei Blende 8!  Ich hatte das Objektiv an der Dynax 7D und ich benutze es bis heute an der Sony A7RIV (mit Adapter LAEA4)  – das funktioniert hervorragend und sehr schnell auch noch bei schwachem Licht! Das Objektiv wurde auch lange Zeit noch mit dem Sony A-Mount ausgeliefert und ist in anscheinend fast beliebiger Menge und günstig am japanischen Gebrauchtmarkt zu erhalten – in Deutschland eher selten und viel teurer als in Japan!). Es ist auch eine meiner „crazy lenses„. (Bericht folgt in einigen Wochen!)

Der Aufbau benutzt zwei Mangin-Spiegel und ähnelt dem Design des Minolta RF 250mm f/5.6. In der Bildqualität spielt es absolut in der Oberliga – wegen der grundsätzlichen  Fokussier-Schwierigkeiten mit den manuell zu fokussierenden CAT-Objektiven ist der Autofokus für sich in der Praxis ein großer qualitativer Nutzen!

Ich halte es – zusammen mit dem RF Rokkor 250mm f/5.6 – für das unter heutigen Bedingungen an D-SLR und Spiegelloser Systemkamera nützlichste historische CAT – auch frei Hand einsetzbar für „normale Alltagsfotografie“. Die Klasse der manuell fokussierbaren 500er CATs ist sonst doch schon etwas für das Staiv!

1997Zeiss Mirotar (für Contax c/y) 500mm f8

Dies ist das letzte relevante 500er CAT (eines Originalherstellers), das auf den Markt kam – und es ist eines der Besten, das Zeiss nun als „Spätgebärende“ herausbrachte. Allerdings kann man den MFT-Kurven bei Marco Cavina entnehmen, dass es nicht an das überragende Referenzobjektiv 500mm f/4.5 heran reicht. (Ich finde: das ist keine Schande – ca. 800 Gramm treten gegen fast 4 kg an …)

Mirotar 500mm f8

Bild 23: Zeiss Mirotar 500mm f/8 von 1997 – Quelle: Zeiss Datenblatt

Dieses Objektiv hat nun alle Merkmale der „modernen“ CAT-Bauweise: Mangin-Spiegel und nicht durchbohrter Hauptspiegel. Es ist allerdings kein Maksutov-Typ mehr sondern eine Hamilton-Bauweise mit ausgeklügelten Sub-Apertur-Korrektoren. Der Mangin-Primärspiegel ist ungewöhnlich dick! Zusätzlich zu einer ausziehbaren Sonnenblende besaß das Objektiv einen sehr schlank gebauten drehbaren Stativanschluss – es war also in jeder Hinsicht  perfekt.


Bild 24: Zeiss MIROTAR 500mm f/8 – Quelle: fotosaurier

Anfang der 2000er Jahre erschienen plötzlich viele nagelneue Mirotar-500mm f/8-Objektive zum Preis von 500 EUR im Angebot (unter halbem Listenpreis)! Es ging das Gerücht, dass ein ganzer Container mit diesen Objektiven geraubt worden sei – danach wäre das alles Hehlerware gewesen … Vielleicht hatte aber auch Zeiss nur wieder ein größeres Los vorweg gefertigt und versuchte die Ware rechtzeitig vor der Einstellung der Kyocera-Contax-SLR (2005) los zu werden – es fand also ein radikaler Abverkauf statt? Ich weiß nicht, was wirklich der Grund war – aber ich habe es gekauft. Im Vergleich zum Olympus-CAT habe ich damals festgestellt, dass beide Objektive gleichwertig an der Spitze des Wettbewerber-Feldes liegen (seinerzeit mit Vergleich auf Analog-Film festgestellt). Ich habe dann das Zuiko-CAT behalten, da es kompakter und leichter war. Bei einem Vergleich am aktuellen 63 MP-Digital-Sensor könnte sich heute allerdings herausstellen, dass eines der Objektive doch dem anderen überlegen ist, da unsere Vergleiche auf Analog-Film einen praktischen Grenzwert von ca. 100 Linien/mm besaßen – entsprechend 1.200 Linienpaare/Bildhöhe. Wie schon oben angemerkt liegt das Olympus-CAT am digitalen Sensor bei 1.500 LP/BH.

In der Zeit nach dem Jahr 2.000:

Nachdem Sony als letzter Anbieter das AF Reflex 500 (original Ex-Minolta!) eingestellt hat, gibt es meines Wissens kein CAT-Objektiv eines Original-Herstellers mehr am Markt.

Einige Fremdobjektiv-Hersteller (auch neuere wie Samyang) haben sehr preiswerte CAT-Objektive im Programm. Die weitaus meisten CATs, die heute herum geistern, werden unter Handelsmarken vertrieben. Man sollte von denen nicht zu viel erwarten. Darunter sind auch solche, die schon in den 1980/90er Jahren exakt so geliefert wurden – erkennbar z.B. an der identischen Ausführung der auffälligen Gummierung des Fokussier-Rings.

Gerade vor wenigen Wochen hat allerdings einer der renommierten Fremdobjektiv-Hersteller (Tokina) wieder ein neues CAT mit 400mm f/8 und T2-Anschluß neu auf den Markt gebracht.

Ist das der Beginn einer Renaissance?

Man wird sehen …

Warum sind die katadioptrischen Teleobjektive (CAT) nach der ersten großen „Welle“ (1965-1990) fast wieder verschwunden?

Auffallend ist, dass extrem viele der im Netz angebotenen CATs in ganz hervorragendem Zustand – oft neuwertig – sind. Das könnte bedeuten, dass sie kaum benutzt wurden. Das ist auch meine persönliche Meinung. Eine Ausnahme bilden überdurchschnittlich oft die „Russentonnen“.

a) Im professionellen Bereich wurden die frühen CATs wohl hauptsächlich wegen der farbreinen Abbildung eingesetzt. Dieser Vorteil fiel mit dem Erscheinen der Tele-Objektive mit ED-Glas ab ca. 1982 weg. Allerdings wurde dieses „Versprechen“ der Abwesenheit von Farbfehlern tatsächlich nur von den Spitzen-CATs am Markt eingelöst. Möglicherweise blieb noch der Grund eines federleichten, kompakten „Immer-dabei-Lang-Brennweiters“ erhalten, der für den Fall des Falles hinten in der Reportage-Tasche schlummern durfte.

b) Das manuelle Fokussieren mit den CATs geringer Öffnungsverhältnisse (f/5.6 bis f/11 !) war selbst für erfahrene Manuell-Fokussierer sehr schwierig. Die Hilfsmittel wie Schnittbildindikator oder Mikroprismenring fielen ab f/8 aus – es blieb meist nur das Fokussieren auf dem Mattglasbereich übrig! Bei professionellen Kameras gab es teilweise wechselbare Einstellscheiben für den SLR-Sucher. Aber ehrlich: wer legt sich zwischendrin ins Gras und fummelt eine Einstellscheibe raus und wieder rein …?

Es ist auch festzuhalten, dass mit sehr wenigen Ausnahmen gerade an preislich günstigen CATs das präzise Fokussieren – für das man eigentlich eine Mikrometer-Schraube gebraucht hätte! – sehr schlecht und grob gelöst war. Das dauert dann, wenn man immer wieder vorbei gedreht hatte … oder die Schärfeergebnisse waren eben unterirdisch!

c) Alle CATs waren mehr oder weniger Streulichtempfindlich, wenn man gegen die Sonne fotografierte. Wenn man den Effekt eines großflächigen „Flares“ nicht bildnerisch nutzen will, kann ich tatsächlich nur davon abraten.

d) Die Verschlusszeit: Hinzu kam der Punkt, dass man an Analog-Kameras mit typischerweise maximal ISO400-Film für ein 500mm-Objektiv doch eine tausendstel Sekunde für ein scharfes Bild gebraucht hätte – also gerade die kürzeste Verschlußzeit, die typischerweise in den 1960er Jahren zur Verfügung stand! Die Stative, die wir als Amateure damals hatten, waren auch für 500er Teles nicht wirklich geeignet.

Da die Dinger so kurz bauen, unterschätzt man unbewusst die Brennweiten-Wirkung auf das Verwackeln. Darüberhinaus hat das „Handzittern“ mit dem kurzen Griff ein großes Übersetzungverhältnis.

Im Grunde waren die weitaus meisten Amateure, die sich erstmals ein so langbrennweitiges Objektiv zulegten, unerfahren in der Nutzung und manuellen Fokussierung solcher wirklich langbrennweitiger Objektive. Mit Übung und Zähigkeit kann man da viel erreichen – aber das bedeutet nur eines: fotografieren – fotografieren – fotografieren!

e) Nun war da auch noch die Situation des großen Zeitverzuges zwischen Auslösen der Kamera und dem Vorliegen der Ergebnisse mit entwickeltem Film/Dias und Vergrößerungen – mit denen eventuell die Enttäuschung aufkam, dass die Ergebnisse einfach nicht scharf oder doch verwackelt sind. Da landete dann vermutlich ein großer Teil dieser zunächst attraktiv erschienenen Objektive in Schubladen und Vitrinen – bis heute: und warteten auf den Weckruf durch die hoch auflösenden, bis ISO3200 nutzbaren digitalen Systemkameras, die binnen Sekunden ein Feedback/Bildergebnis liefern?

Werden die Karten für die CATs mit den modernen Systemkameras heute neu gemischt?

Ich halte das durchaus für möglich, dass die wahre Zeit für solche Objektiv-Designs nun erst begonnen hat:

Mit der praktisch gut nutzbaren ISO-Empfindlichkeit bis zu 3.200 oder 6.400 und elektronischen Verschlüssen bis 1/40.000 Sekunde gibt es eine dramatisch verbesserte Ausgangslage.

Allerdings muss man sich immer bewusst machen, dass trotz der tollen Fokussierhilfen an digitalen Kameras das manuell Fokussieren dennoch eine echte Herausforderung bleibt – zumal der  jüngere Normalfotograf keine Routine im manuellen Fokussieren besitzen dürfte! Wenn man bei 500mm Brennweite und 11-facher Fokussiervergrößerung versucht zu fokussieren tanzt das Bild im Sucher wie beim Blick durch ein Objektiv mit 5,5 Meter Brennweite – mit etwas Pech verliert man sogar sein Ziel aus dem Auge … Da hilft nur ein Stativ!

Ein Autofokus wäre hier eine durchschlagende Verbesserung der Nutzbarkeit.

Anscheinend testet auch schon ein renommierter Fremdobjektivhersteller (Tokina) gerade den Markt mit einem nagelneuen CAT mit 400mm f/8. Aber auch manuell zu fokussieren …

Aufhorchen lässt dabei auch die jüngste Ankündigung der Firma Canon, nicht mit CATs aber mit neuen DO-Tele-Objektiven von 600mmund 800 mm mit Öffnungsverhältnissen von f/11 neu entwickelt für die Sensoren der spiegellosen Systemkameras mit AF und IS im Objektiv und ebenfalls sehr kurz bauend bzw. zum Transport zusammenschiebbar. („DO“ bedeutet „Diffraktions-Optik“ – das sind dünne, leichte Beugungs-Elemente, die Linsen ersetzen können. Canon testet diese Technik seit Jahrzehnten bei langen, lichtstarken Teleobjektiven.)

Bei der Benutzung von historischen CAT-Objektiven an den modernen Digital-Systemkameras muss man sich klar machen, dass die Optiken nicht für die Benutzung am digitalen Sensor berechnet wurden und nicht jedes CAT mit jedem Sensor harmoniert. Da kann es auch vorkommen, dass eine Optik an einer Sony Probleme zeigt, an einer Fujifilm- oder Olympus-Kamera aber nicht. Typische Probleme sind helle „Halos“ in der Bildmitte, niedrige Auflösung am Bildrand oder generell flauer Kontrast.

Viel Spaß beim Ausprobieren – ich werde sobald es passt über einige CAT-Sensor-Kombinationen in meine Rubrik „My Crazy Lenses“ berichten.

Herbert Börger, Berlin, 8. November 2020