My Crazy Lenses / Meine sehr speziellen Objektive – Focal length 24mm / Brennweite 24mm – FoV 84° – Part I

What was the real improvement in SLR-wideangle-lenses since the invention of the retrofocus principle over the last 65 years? Does my personal judgement from analog-film-days which lead to the definition of „legendary optics“ – which I kept in my lens-portefolio over that time – correlate with objective resolution-measurements? Here are my findings.

1 – Introduction

24mm focal length is a real milestone in spreading the field of the view in wideangle lenses, coming down from FL 35mm over 28mm. For the SLR-camera-user this age started with the appearance of the retrofocus lenses in the 1950s. Several designers came out with this optical principle within three years – with Pierre Angénieux earning the honours of being FIRST (in time and quality – 1950, 35mm f/2.5) in this disciplin.

This is a report about SLR-lenses for 35mm-still-foto-cameras with focal lengths (FL) between 23mm and 25mm.

This is a report about a number of legendary lenses, which I happen to own or could lend from a friend  („phothograf“), most of them being milestones of optical engineering in their respective design-periods.

Fig 1: three of the very first historical retrofocus-lenses with FL 24mm and 25mm – source: fotosaurier

Over the decades of my own practical use of SLR-lenses (of nearly all makers-brands!) has lead me to an understanding of the quality for normal photographic use.

This collection of test candidates does NOT claim to be a COMPLETE collection of all design legends of 24mm/25mm. There is a large gap in time with prime-lenses between 1984 and 2015. That means: the legendary first historical aspherical lenses in this range are missing in the comparison. If I ever will be able to get hold of them for a test, I would update this article. The modern lenses tested for comparison are (of course) all aspherical types!

In spite of the fact, that important legendary lenses of the 1980s and 90s are missing here, this report allows to draw some interesting conclusions about important steps in optical lens-engineering, which finally lead to Ultra-Wideangel-Lenses which have uniform resolution and contrast over the complete field of view (FoV).

I have always looked for a method to show the quantitative progress in optical quality of photographic lenses over the nearly last 100 years – and I think I have found a good way to understand this progress with my new comparison-charts (Fig. 4 and Fig. 5 see below). What was surprising: the progress over time is independent of the lens-maker and brand. It is generated by a sequence of milestone-like innovations by singular design-legends, innovative calculation progress, creation of new glass-formulations and finally the lens-making-process – espacially allowing for the production of aspherical lens-surfaces! Once the innovation-step is basically made, it is spreading around the globe very quickly (typically within one or two years!).

There are few lenses, which stand out of the general quality-development curve, reaching a higher level of resolution earlier than most others – to be seen here mostly in Fig. 5:

ATTENTION: These measurements are made with USED lenses today, some of which are more than 60 years old! There are influences from ageing and wear (even abuse …) which have become part of the lens-properties when we measure them after long time. However, I only make measurements with samples of lenses, if the optics are clear and undamaged and the mechanics do not show excessive wear or abuse.

Fig. 2: Starting with big-big negative front-meniscus-lenses (at left Angenieux Retrofocus 24mm f/3.5 and Zeiss Jena Flektogon 25mm f/4) the lens-designers soon learnt to reduce the front-lens diameter (at right: Distagon 25mm f/2.8 for Contarex and Olympus OM 24mm f/2,0), creating better results and generating lens-bodies, which were more acceptable  – source: fotosaurier

2 – Data section for 15 historical 24/25mm-prime lenses, 3 modern 23/25mm prime lenses and 4 modern zooms at 24mm-setting:

Fig. 3: Physical Data and resolution data  of all the tested lenses – the c/y-mount-Distagon of 1970 I could not measure stopped down. Therefor it is missing in the following comparison-diagrams. „Milestone-lenses“ are marked green – source: fotosaurier

Out of this Chart I have filtered two separate charts, showing the development of RESOLUTION over the decades.

Fig. 4 shows the center-resolution open aperture (blue) and stopped down to the aperture with the highest resolution (green) in the center:


Fig. 4: Center Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and stopped down to optimum aperture (which means: the aperture at which the weighted mean over all the 46 measurement-places in the 24x36mm-frame is maximum. (The maximum center resulution-value of the individual lens may be higher.) In Fig. 3 you can look-up, which the optimum aperture is. – source: fotosaurier

The second chart is showing the corner-resolution at open aperture (blue) vs. the best resolution-value stopped down (green) in the corners (mean value over all four corners) – where „corner“ means a value of 88% – 92% of the full picture circle of the lens which is 21.5 mm radius:


Fig. 5: Corner Resolution-values  of 21 Lenses at FL 23-25mm at open aperture (blue) and optimum aperture (green, which means: the aperture at which the weighted mean of all the 46 measurement-places over the 24x36mm-frame is maximum. (The maximum corner resulution-value of the individual lens may be higher.) – source: fotosaurier

You see, that nearly all of the difference in resolution of historical top-notch wideangle-lenses for SLR is in the corners of the picture (and of course also continuously in-between center to corner areas). This is easy to understand, because the difficulties for lens-correction rise dramatically with the FoV, which is here 84 degrees corner to corner diagonally.

Besides the resolution, there are other important properties, which improved dramatically over these six decades of lens-engineering history:

a – Chromatic aberration (CA in pixel): It is very low in all these lenses in the center. It typically ranged between 4 and 8 pixels in the corners for the very first lenses of this type. It stayed around 2-3 over the time before aspherical lens-surfaces could practically erase it. Today with the best modern lenses, the value is close to zero (under 0.5) without camera correction and zero with correction.

Among the early lenses the Zeiss Distagon 25mm f/2.8 (though not really outstanding in resolution compared to the other early lenses) pops out, because it had already values of 2-2.5 pixel in the corners – together with the „unicorn“ Topcor 2,5cm f/3.5.

Please consider, that the CA-value in pixel for the same lens is the higher the smaller the pixel size of the sensor is  – here 1 pixel is 3.77 µm.

b – Linear distortion (%): distortion shows – from the beginning – the biggest differences between the legendary lenses of the different designers and brands. The designer has to do a compromise-job in each lens, balancing out the design between resolution, chromatic aberrations and distortions. 0,5 pixel is a very good CA-value even acceptable for acrchitectural work (though „zero“ would be better, of course), 0,75-1,0 pixel is a good compromise-value and 1.5 pixel just acceptable for alround use.

Looking at the spread-sheet Fig. 3, it is surprising, that Angénieux with the very first retrofocus-lens of this wide angle decided to go for nearly „ZERO“ distortion in his design! He had gone close to zero in the 35mm and 28mm-designs before that, too! Probably he wanted to give a statement of his art, because this was really difficult at that time … At the same time he accepted a somewhat higher CA of 7-8 pixels (corresponding to 0.03-0.04 mm). In my collection of top-notch lenses such a low distortion does not appear again before the modern Zeiss Batis Distagon 25mm f/2.0 – and only the legendary 1971 Minolta MD 24mm f/2.8 (including the VFC-Version) came very close with ca. 0.18-0.29% distortion in my measurements.

c – The close-focusing system: there are further innovations to consider, e.g. the lens-design for close focusing. Here one of the important innovations is the floating-element close focusing system – introduced 1971 by Nikon and Minolta first for wideangle lenses as far as I know. This is one of the early merits of the two 1971/75 24mm-Minolta-lenses.

3 – Conclusions:

3.1 Center-resolution:

Since the early days of geometrical optic lens-design with Petzval, Abbe and Seidel, lenses could be designed absolutely perfect for nearly unlimited image-quality (resolution and CA) „on-axis“, which means: in the center of the picture-field … And the  famous designers did it all the time – as soon as they used 4 or more elements in a photographic lens-system.

The first time, I found a proof for that, was with my resolution-measurements on Bertele’s first Ernostar 100mm f/2.0 from 1923 (a four-element-design WITHOUT COATING!). Compared to the legendary Leitz Apo-Macro-Elmarit 100mm f/2.8 from 1987, this lens achieved 98% of the resolution in the center – but only in the center! See my Ernostar-Bog-Article here. (This was the very first report in my photo-blog …)

So, it is not really surprising, what Fig. 4 is telling us: all top-notch lenses show a very high resolution level in the image center since the invention of the retrofocus wideangle design in the 1950s – and they are all on the about same level – though being historical lenses with up to 65 years of age on their back! The reason for that result is, of couse, that only legendary lenses of all brands are taken into the comparison! Maybe the Takumar-lens happens to be one of the weaker examples …

The Olympus OM 24mm f/3.5 „shift“ drops down somewhat against its neighbours. That is no quality issue: this lens has an image-circle diameter of 57mm for up to 10 mm shift! It came out 1984 long before Canon brought out its famous tilt-shift-lenses … Look at the corner-resolution result of this lens in Fig. 5 – it resolves extremely even over its FoV!

in this graph I marked two horizontal lines: one for the resolution of 2.000 LP/PH (linepairs per picture height), corresponding to the resolution of a 24 MP-sensor, which today is the de-facto-standard for  modern digicams. It normally has 4.000 by 6.000  pixels – and 4.000 pixels in the picture height, corresponding to 2.000 Linepairs. At the same time it is just (+15%) above the 21 MP which I estimate for the resolution of modern analogue (general purpose) film emulsions.

The other (upper) horizontal line marks the 3.184 LP/PH Nyquist-frequency of the Sensor in the Sony A7R4-digicam. This is physically the limiting resolution-value for the camera itself. Today, however, the software-algorithms in the camaras can generate structures in the picture, which are typically 15 – 20% higher in resolution, compared to the Nyquist-frequency. And they do this without creating an artificially looking „oversharpened“ picture! Good job!

This means:

All the legendary historical 24/25mm-retrofocus-lenses for SLR-cameras do out-resolve the modern 24 MP-Digicams in the center – mostly even with open aperture! And many of these lenses even come very close to (or exceed) the Nyquist-Frequency of my 60,2 MP digital camera.

Among the historical lenses two examples peek out a little bit (they peek out much more in the graph for the corner-resolution!):

The legendary 1959 Topcor 2,5cm f/3.5 exceeds the Nyquist-frequency of 3.184 LP/PH – and stopped down to f11 it is in the center the highest resolving of my 24/25mm-lenses until today. Together with the tremendous result of its corner-resolution it is one of the exceptional lenses, which I call my „UNICORNS„. Until today, I have not found any explanation for the astonishing early level of performance of this lens – how could that have been achieved? (15 years before the next-best Olympus-lens!) – and who did it? – and where did this person go afterwards, when Topcons innovative power faded out, to bring in her/his inginuity? (… to Olympus?). (This observation refers to other early Topcor-lenses al well!)

The other unicorn peeking out here is the Olympus OM 24 mm f/2.0 of 1973. In my lens-collection it is exceeded only by the 40 years younger Zeiss Batis 25mm f/2.0.

Referring to the zoom-lenses (set at FL 24mm) in this test: I just was curious, where the modern zooms would stand in such a comparison. We learn that the 1kg-Monster-Tokina 24-70mm zoom at 24mm has one of the best results – even at f/2.8 … in the center of the picture.

At the end of the line-up of 21 lenses I put the Fujinon-Zoom 32-64mm f/4 at 32 mm on the Fujifilm GFX100 (33x44mm – 102 MP), which corresponds to FL 26mm on „full-frame 35mm“. This shows, that for an essentially higher resolution in the picture-center, we today have to go to a larger sensor-format.

3.2 Corner-resolution:

Fig. 5 contains the important informations of this comparison-test. It shows, that step by step all the improvements in innovative design, glass-formulations and aspherical surface-generation were needed to bring finally the corner-resolution of the picture up on par with the center resolution at 24mm focal length, which is possible today – but only with the use of aspherical lens-elements!

In the graph for the corner-resolution I have added a third horizontal line, which marks the resolution at 50 Lines/mm – corresponding to 600 LP/PH. This is needed to judge the corner-resolution of the early historical lenses.

In the 1960s a wideangle-lens was rated „very good“, when it achieved a resolution of 40 Lines/mm (Modern Photography and others). I have written an article about this already here (in German).  Open aperture most super-wideangle-lense started open aperture in the range of 26 to 32 L/mm in the 1950s and 60s. Stopped down practically all the tested historical lenses surpassed the 40 L/mm-limit.

From 1958 on (ENNA) the stop-down corner-resolution rises continualy (with the exception of the two „unicorns“, already identified in Fig.4) until end of the 1970s,  it arrives close to the 2.000 LP/PH-level, which means: from now on the top-notch-lenses out-perform standard analogue fine-grain film (1977 Nikkor and 1984 Olympus). This last step was then achieved by the use of extraordinary dispersion glass-types.

The two „unicorns“ in this test arrive much earlier at this level: the Topcor 2,5cm f/3.5 out-performs analogue film already in 1959 and the 1973 Olympus OM 24mm f/2.0 exceeds this and comes close to todays modern aspherical lenses.

The modern aspherical prime-lenses are represented in my test by two very different samples:

There is the 23mm f/4 Fujinon, which originally is a GFX-lens – but in this test it is measured in the 24x36mm-Mode also with 60.2 MP on the GFX100, showing the state of the art for these modern aspherical lenses.

Just as I made my measurements for this test, the SIGMA i-Series 24mm f/3.5 arrived as a representative of a new thinking: no „impressive“ technical data   – but (hopefully) impressive preformance instead. The result shows: it achieves reference status on a 60.2 MP-sensor with corner-resolution at 85-95% of center-resolution, plus zero-distortion, zero-CA and very close focussing!

Also great news: modern zooms like the Sigma G 12-24mm f/4 – measured at 24mm – arrive now at this level of prime-lenses also in the corners!

As I had no samples of the early historical aspherical lenses in this test, we can not see, in which steps the aspherical lens surfaces moved the wideangle-performance in the picture-corners to the present level.

Maybe this gap can be filled out in some future times.

NOTE 1 – All resolution-values, which are published in this article, refer to MTF30 – what means: the point on the MTF-curve (see Fig. 7), which hits the 30% contrast value.

NOTE 2 – in Part II of this Article I will share some more informations about each individual lens (including pictures, MTF-curves and  lens-schemes).

Appendix: Method of measurement and definition of results

I use the set-up and software by IMATEST with the original IMATEST-Target. I use the large SFRplus-Setup-Image with a physical hight of 783mm bar-to-bar vertically. The distance from target to lens-flange is 0,97 meters. In this area 46 targets are analysed and I share MFT30-weighted-mean-resolution-values (all-over, center and corner), edge-sharpness, linear distortion and maximum lateral CA-values.

Resolution-values are given in Line-Pairs per Picture Height (LP/PH) – where the picture-height is always 24mm. Edge-sharpness is given in pixels (width 3,77 µm).

Fig. 6: IMATEST test-target 783mm-bar-to-bar distance. Resolution is NOT measured in the small concentric targets, but at the outside-edges of the black boxes, which are tilted b ca. 5 degrees – source: fotosaurier.

For the measurement I used a SONY A7Rm4 with 60,2 MP-resolution which has a pixel-width of 3,77 µm. The theoretical resolution-limit of the sensor is 3.184 LP/PH (Nyquist Frequency).

The camera setting is used basic as delivered from factory at ISO100 and exposure-compensation of -0.7 stops, using out-of-camera JPEGs. All measurements are made with the identical camera-body (which is important for a precise comparison: I have used one other (earlier) body of this model in comparison, which gave resolution-values between 50 and 200 LP/PH lower than my own camera-body). The repeatability with this method I estimate at 2-2.5%, using ALWAYS manual focusing on the lens with maximum focusing enlargement (11.9-fold) in the camera-viewing-system. Measurement is repeated with re-focusing until a stable maximum resolution at open-aperture of the lens is found and then pictures of the resolution-target are taken with the focussing made wide open for all full down-stops of each lens.

Edge profile (edge-sharpness) is the width of the rise from 10% to 90% intensity at a dark-bright edge in the test target – measured in pixel (width 3,77 with the camera used) – Example shown here for the latest 24mm-prime-lens SIGMA i-Series 24mm f/3,5 – at open aperture f/3,5:

Fig. 7: Edge-profile (top) and MTF-curve (bottom) from the IMATEST software – here the perfect graphs for the brand new Sigma 24mm f/3.5 – at open aperture. I will publish these Curves for all the lenses in PART II of this article – source: fotosaurier

Cromatic Aberration (lateral in the picture-plane) is also measured in pixel separate for red against green and blue against green over the full picture field – in the spread-sheet I note the maximum value, which is in most cases for blue and for most historical lenses in the corners of the picture – sometimes however in the intermediate area.

For more details of testing read my special blog-Article here.

Copyright: Herbert Börger

Berlin, March/April 2021

Ice-Age in Berlin – Berliner Eiszeit

Berlin, Ferbruary 21, 2021

During February 2021 we received a new lesson about the difference between „Weather“ and „Climate“. During rising average-temperatures, accompanied by very mild winters normally, we experienced something, which in fact deserved the name of „WINTER“ with snow, accompanied by temperatures outside your front-door, which you used to know from your deep-freezer!

Water is a fascinating element, which again and again creates wonderworlds for photographers: and I am going to show here some of these wonders, using my „Gartenmikroskop“ („Garden-Microscope“), as I have done with liquid water last summer – see my blog-article „Nach dem Regen“.

For this winter I had hoped, that there would be the occasion to photograph the crystallized form of water in nature (hoarfrost – German: Raureif) – but there were no appropriate conditions here for hoarfrost this year.

Instead we got an impressive occasion to observe amorphous ice.

Here is a teaser-photo:


Picture 1: I called this „The Frozen Torso“ – it is created by water from dewing snow, coming down from our roof. The sun has two important functions here: first dewing the snow and then creating the illumination for this picture…

NOTE: In my photography I only use natural ambient light. My pictures are out-of-camera with just minimal (necessary) adjustments of brightness, gradation-curve, color-dynamic and saturation to show the „real“ scene, which I have seen. My camera for this expedition is the GFX100 with the 120mm-Macro-lens.

In these days before 12.02.2021 (a nice panlindrome date!) we had -15 °C even at noon time with bright sunshine. the days before there had come down 25 cm of snow.

During a short noon-period with the sun perpendicular to the roof, melt-water was generated and was pouring out of the rainwater gutter – down the heavy steel-chain – refreezing directly on the ice-cold steel structure.


Pictuere 2: Melt-water running down the steel-chain fom the rainwater-gutter at -15 °C, creating a phantastic sculpture on the chain.


Picture 3: Detail – process of „building“ the ice-sculpture.

In the following picture you see the the steel-chain, carrying the ice-sculpture, before it was completely enclosed


Picture 4: The golden colour of the steel-chain is real – in summer it is sprinklered with ground-water, which contains high amounts of iron and generates this nice „plating“ at the lower end of the chain. Reflexes and deflections of this chain-surface generate the „Whisky-on-the-rocks“ colour situation on some of the following pictures (and there I may have increased dynamic and saturation, to pronounce this …)

Close to the rainwater-chain there are standing a forsythia and a rose-bush.

The splashing around „undercooled“ melt-water is creating sculptures of their own in these:

ForsythiaEis_Blog_DSCF2004 Eisknospe_Blog_DSCF2011

Picture 5A and 5B: The forsythia-buds, which is dreaming in the ice here, are about to break open within three days from today (14 days after I took this picture), due to a dramatic temperature-rise of 30 K following the deep cold.


Picture 6: Rosehips „on the rocks“. The blue is from cold, clean-white snow!

If I were a notorious photoshopper, I would have composed myself as a 30 mm tall climber on a rope into the icy „north-side“ of the sculpture …


Picture 7: Freshly sculpered ice at the north-side during the freezing-process.


Picture 8: … and here the promised „Whisky-on-the rocks“, deflecting the golden colour of the rainwater-chain – colour saturation set „high“.


Picture 9A+B: Spacy formations, which are created in the first freezing period – surface still wet.


Picture 10: Extremely dynamic ice-formations – drops still falling down from the rain-gutter…


Pictures 11 A-C: Clear and deep ice against the sun.

Some sections in the ice looked like deep-sky objects straight against the sun:


Picture 12: „Deep-sky object“

The sculpture boosted my phantasy in many different views.


Picture 13: „Asteroid“

After another deep-freezing night and dry weather, the surface of the ice re-crystallized in the surface, which generated a completely different appearance: a matte skin with an opaque, shining body of the ice-sculpture.


Picture 14 A+B: „Frozen Goliath“ – with a huge Nose and a moustache …

During the freezing-process the water-drops, which hit the growing ice-sculpture, did freeze so fast, that icicles grew in horizontal direction, where the splashing drops had a horizontal component of the dynamic momentum:


Picture 15: Generation of an oblique icicle due to horizontal momentum of drops and very low temperature, which forces to freeze the water extremely quick.

This leads to such extraordinary details – seen at the next day:


Pictures 16 A-C: 3D-Icicles

And under certain (natural) lighting conditions, the ice-sculpure can get the look of Metal …


Pictures 17 A-C: „Frozen Metal Insects“ – this is Ice – Not Metal! I assure you again, that I use no digital filters and no HDR for these pictures – just natural ambient lighting and the fine-adjustment of gradation-curve, colour-dynamic and -saturation.

I hope, you enjoyed my trip through the ice-sculpture, which was created by a fancy mood of nature – and is gone by now since several days!

Copyright – Herbert Börger, fotosaurier – Berlin, 21.02.2021

Nach dem Regen – unterwegs mit dem „Gartenmikroskop“

Der Schauplatz dieses Essays ist der Ziergarten, den meine Frau seit 2017 in Berlins Südosten  angelegt hat.

In den meisten Sommern bisher (3 von 4) herrschte große Trockenheit – wenn nicht gar Dürre! Ein Grundwasser-Brunnen und ein fein verästeltes Betropfungs- und Besprinkelungs-System verhinderten das Schlimmste. Wir haben seither immer  eine Flasche Schampus kalt stehen, die wir öffenen, wenn es so viel geregnet hat, dass der Boden vollständig nass wird. Da das lange Zeit fast nie geschah, haben wir manche Flasche dann eben aus Verzweiflung geleert … ehe sie verdunstet wäre!

Zumindest hat Regen bei uns den Charakter eines besonderen Ereignisses – und Außerirdischen von einem Regenplaneten wird sicher ganz besonders unser dämlich-seliger Gesichtsausdruck auffallen, den wir haben, wenn wir draußen stehen und uns die dicken Regentropfen ins Gesicht klatschen lassen. Das passierte nun endlich in diesem Jahr etwas häufiger.

Nach dem Regen verändert sich die Welt im Garten dramatisch: die Farben werden leuchtender und satter, weil einerseits Blütenstaub von den Pflanzen abgewaschen wurde und andererseits die Luft nun viel klarer ist. Außerdem wird das auf die Oberflächen der Pflanzen fallende Licht nicht nur diffus gestreut, sondern es sitzen Millionen kleiner Linsen auf den Blättern und Blüten, die Das Licht bündeln, beugen und brechen.

Kommt nun die Sonne heraus (möglicherweise erst nach Stunden) hat die Szene ihren großen Auftritt: Myriaden von Tropfen leuchten und glitzern … es ist ein optischer Rausch!

Aber wie soll man das fotografisch „erfassen“? Das „Ereignis“ selbst ist im mikroskopischen Bereich angesiedelt. Wie soll man da in einer Übersicht einer Garten-Szene einfangen, was der Mensch als Betrachter ja eigentlich erst in seinem Gehirn aus dem physikalischen Ereignis und der physiologischen Reizkette als „Impression“ komponiert?

An dieser Aufgabe arbeite ich noch. Ein erstes Ergebnis sehen Sie hier:


Bild 1: Sonnenaufgang nach nächtlichem Schauer. Quelle: fotosaurier


Bild 1a: Hier in einer Variante … Quelle: fotosaurier

Meine Sofortlösung lag in dem alten, bewährten Prinzip „pars pro toto“ – deutsch: der Teil spricht für das Ganze!

Ich lasse mich auf Augenhöhe an die pflanzlichen „Gartenbewohnern“ heran und studiere ihren äußeren und inneren Kosmos, in der Hoffnung, dass in der Summe der Bilder sich das GANZE im Betrachter zusammensetzt.


Bild 2: Frauenmantel – der Pedant unter den Bodendeckern: versuche mal, ihm eine Lücke in den Perlenschnüren nachzuweisen … – Quelle: fotosaurier


Bild 3: Polyantha-Rosenblüten – viele meiner Aufnahmen entstehen sehr früh am Morgen bei sehr flachem Streiflicht – Quelle: fotosaurier


Bild 4: Rittersporn (Wildform) – diese Schönheit ist nur ca. 12 mm lang – Quelle: fotosaurier


Bild 5: Lilie – diese Blüte hat ca. 100 mm Durchmesser – Quelle: fotosaurier


Bild 6: Blatt des Phlox (rosa) hat die vermutlich niedrigste Oberflächenspannung in unserem Gartenreich – Quelle: fotosaurier

Wie und wo, sich Tropfen in welcher Gestalt auf Blättern, Stengeln und Blüten finden, hängt von physikalischen Größen ab (ja: und auch ein bisschen physikalische Chemie ist dabei…): Oberflächenspannung, Luftfeuchtigkeit, Temperatur, Geometrie bestimmen die Form und Größe des Wassertropfens und den Aufenthaltsort und schließlich bestimmen die physikalisch-optischen Brechungsgesetze des Lichts die Erscheinung.


Bild 7:  Jeder einzelne Tropfen projiziert ein Bild der Pflanze selbst und der umliegenden Gartenlandschaft! Hier an der Hartriegel-Scheinblüte – Quelle: fotosaurier


Bild 8: Am Wild-Rittersporn – die Kleinsten haben den größten Auftritt –  Quelle: fotosaurier


Bild 9:  Bild des Gartens bis zum Horizont … in einem Wassertropfen am rosa Phlox – Quelle: fotosaurier


Bild 10:  Wasser-Kugellinsen projizieren Brennpunkte des Sonnenlichtes auf das Blatt am Frauenmantel – Quelle: fotosaurier


Bild 11: Das Blatt des Spier-Strauches trägt „Brillianten“ – Der Wassertropfen als Lupe vergrößert die Blatt-Härchen, auf denen der Tropfen schwebt – Quelle: fotosaurier

Die Vielfalt der Kompositionen, die sich daraus ergeben, ist – in Verbindung mit Jahreszeit, Tageszeit, Wetter und den Möglichkeiten des Fotografen oder der Fotografin – unendlich groß: Wenn Du in Deinem gesamten Leben an jedem Tag nur in Dein begrenztes Gärtlein gehst und fortografierst, wirst Du nie zweimal dasselbe Bild machen! (… ja eine Variante des berüchtigten Flusses  … !)

Wenn man sich dies alles lange genug betrachtet, kommt man unweigerlich zu dem Schluss: das passiert nicht nur alles passiv mit den Pflanzen – was da passiert, folgt auch einem Plan der Pflanze, die also eine Absicht verfolgt!

  • Die Blätter sollen die Wassertropfen in Richtung auf den eigenen Wurzelkreis ableiten;
  • Die Atmungs-Schlitze auf der Blattunterseite sollen nicht überflutet werden;
  • Die Blüte will ihren Blütenstaub trocken halten;
  • Es sollen Insekten zum Trinken nahe der Blüte angelockt werden.


Bild 12: Blatt des Agapantus – leitet alles in seinen Wurzelstock – Quelle: fotosaurier


Bild 13: Akelei-Blatt – Sie hält ihr Blatt perfekt trocken – Quelle: fotosaurier


Bild 14: Blumenhartriegel – Trinkhalle für Insekten – Quelle: fotosaurier

Eine der offensichtlichsten physikalischen Einflussparameter ist die Oberflächenspannung, denn sie bestimmt sehr viele einzelne Eigenschaften der Tropfen:

  • Der Winkel, der sich zwischen der Blattoberfläche und der Tropfenoberfläche bildet,  bestimmt, wie der Tropfen uns als lichtbrechende „Linse“ erscheint: als perfekte Wasserkugel oder als flacher oberflächlich glänzender See.
  • Die Haltedauer der Tropfen an der Pflanze: bleibt der Tropfen fest sitzen bis er verdampft ist oder läuft das Wasser bei der leisesten Erschütterung ab?

In den nächsten beiden Bildern sehen wir eine Blüte, die ihre Strategie von der Phase der Knospe (hier viele fingerförmige Knospen als Rispe angeordnet!) zur Blüte drastisch ändert – es ist die Zuchtform der Montbretie:


Bild 15: Knospen-Rispe der Montbretie – zieht sich das Wasser an, wie einen Handschuh!  – Quelle: fotosaurier


Bild 16: Blütenrispe der Montbretie – hält ihr Pulver (=Blütenstaub …) trocken! – Quelle: fotosaurier

Die Knospen-Rispe zieht sich die Regennässe vollflächig über, wie einen Handschuh (sehr niedrige Oberflächenspannung). Die Blüte entfaltet sich mit hoher Oberflächenspannung zum Regenwasser und hält so die Tropfen auf sicheren Abstand zum duftenden Sekret in ihren Blütentrichtern.

Zu solchen Zwecken sind die Pflanzen Meister der Komposition von Oberflächentexturen und chemischen Molekülstrukturen, die die Wechselwirkung mit dem Medium H2O präzise nach ihren Bedürfnissen regeln.

Alle naturwissenschaftlichen Betrachtungen beiseite lassend, tauchen wir aber schließlich in einen schier endlosen Mikrokosmos der Formen, Farben und Lichtbeugungen ein – der schließlich in fast abstrakten Kompositionen hoher Suggestivkraft enden kann:


Bild 17: Rosenblüte nach einem Schauer – Quelle: fotosaurier


Bild 18: Rosenblüte nach leichtem Schauer – Quelle: fotosaurier


Bild 19: Tulpenblüte nach einem kräftigen Schauer  – die Blüte hat sich unter dem Gewicht der Tropfen zur Seite geneigt – Quelle: fotosaurier


Bild 20: Funkien-Blatt, vom Dauerregen „geflutet“ – Quelle: fotosaurier

Wassertropfen in der Natur können außer vom Regen auch von anderen Wetterphänomenen gebildet werden:

  • Tau
  • Nebelkondensation (nicht dasselbe wie Tau – sieht völlig anders aus!)
  • Rauhreif und schmelzendem Rauhreif

Das ist jeweils ein eigener Mikrokosmos – der jeder für sich neue Bilder schafft.


Bild 21: Hier zur Erinnerung ein Bild mit Tropfen aus Nebelkondensation aus meiner Altweibersommer-Serie – Quelle: fotosaurier – Links: Altweibersommer2016, Altweibersommer2017, Altweibersommer2020

Aber auch Regen ist nicht gleich Regen! Die Bilder, die ich bisher gezeigt habe, stammen meist vom frühen Morgen oder Vormittag – nach einem nächtlichen Schauer. Das war hauptsächlich bedingt durch das hiesige Wettergeschehen im Berlin-Brandenburger Raum.

Nach zwei Tagen ununterbrochenem Landregen (den hatten wir 30./31.10.2020) sieht der Tropfen-Kosmos völlig anders aus:


Bild 22: Rosenblätter nach Dauer-Landregen – Quelle: fotosaurier

Während nach kurzer Regendauer am Rosenblatt meist das Wasser völlig abperlt, und dann (kleinere) Tropfen am Blattrand nach unten anhängen, sitzen hier viele dicke Tropfen AUF dem Blatt. Den netten „Beifang“ (kleine Schnecke am Blattstiel, kaum größer als die Wassertropfen) nimmt man natürlich gerne mit: die habe ich erst auf dem Bild am PC entdeckt. So geht es auch oft mit Insekten, die sich unbemerkt und bereitwillig genau in der Schärfezone meiner Bilder aufhalten!


Bild 23: Rosenstängel nach Dauer-Landregen – Quelle: fotosaurier

Auch beim Stengel der Rose ein ähnliches Bild: während nach Regenschauern die Tropfen ausschließlich unten am Zweig hängen, sitzen sie hier fast ausschließlich oben auf dem Stengel. Bei dieser Rosensorte ist sogar das Blatt jetzt schon völlig durchnässt – das Wasser perlt gar nicht mehr ab.


Bild 24: Rosenknospen nach Dauer-Landregen – Quelle: fotosaurier


Bild 25: Ausschnitt von Bild 18: wenn man ganz genau hinsieht, haben die Netze der Baldachin-Spinne die 2 Tage Dauerregen überlebt!- Quelle: fotosaurier


Bild 26: „Regentropfenspieße“ bis zum Abwinken … mehr geht fast nicht in die Seggen-Blüte hinein – Quelle: fotosaurier

Wie ist meine Arbeitsweise bei dieser Art der Fotografie?

Alle Aufnahmen entstehen frei Hand – ohne Stativ. Das IBIS der Kamera hat einen wesentlichen Anteil am Erfolg – aber auch die benutzte Iso-Einstellung von 800, bei der ich die Dynamik des Sensors vollständig ausnutzen kann!

Nur relativ wenige meiner Regentropfenbilder entstehen im gezeigten Ausschnitt – sehr viele Bilder sind Ausschnitt-Vergrößerungen, teilweise bis dicht an die 100%-Darstellung. Sehr viele der gezeigten Kompositionen sind erst beim Durchmustern der 100 MP-Bilder entstanden. Die Nutzung der Fujifilm 100 MP-Kamera (GFX100) hat einen entscheidenden Anteil an der Entstehung dieser Bilder. Und der Zufall hat dadurch eine wichtige Rolle in meiner Regie bekommen! Ich will nicht verhehlen, dass das Durchforschen der mikroskopischen Welten in den 100 MP-Bildern ein Vergnügen ganz eigener Art ist.

Ich verwende dazu das Fujinon GF 120mm-Makroobjektiv  – und die Fähigkeit der Kombination von Digitalsensor und Objektiv, den Raum im Schärfebereich auch bei 100%-Vergrößerung noch sehr plastisch darzustellen, hat einen großen Anteil an dem Vergnügen! Die Kombination dieser Kamera und des Objektives nenne ich „mein Gartenmikroskop„.

Zum Schluss ein Tipp: es müssen nicht immer Myriaden von Wassertropfen sein, die ein beeindruckendes Bild erschaffen. Manchmal gilt auch: „Weniger ist mehr!“:


Bild 27: Ein einzelner Tropfen an einer Dahlienblüte! – Wow! – Quelle: Fotosaurier

Und noch ein Tipp:

Für Werbefotos wird im Studio selbstverständlich die Methode angewendet, die Pflanzen, Früchte (und Menschen?) mit der Sprühflasche anzusprühen. Ich kann Hobby-Fotografen nur davon abraten: man sieht den Unterschied zu natürlichem Regen, Tau etc. (ich verrate nicht, woran man es sieht! Sie kommen sicher selbst darauf …).

Ich mache das nicht … ebenso wie ich nie mit einem Blitz arbeite – nur mit natürlichem Tageslicht!

Aphorismus des Tages: Der Fotograf kann das Wetter nicht ändern – aber er kann etwas draus machen (fotosaurier)

Copyright fotosaurier, Herbert Börger, 10. November 2020