Teil II: Spiegel-Linsen-Systeme für die „normale“ Fotografie.
Für fotografische Tele-Objektive werden ausschließlich Kombinationen von Spiegeln und Linsen – sogenannte katadioptrische Systeme – eingesetzt.
ENTSTANDEN sind auch diese Optik-Systeme ursprünglich alle im Bereich der astronomischen Optik (s. Teil I).
Diese Spiegel-Linsen-Systeme sind für normale fotografische Aufgaben im terrestrischen oder sogar Nahbereich geeignet – aber natürlich auch für astronomische Anwendungen und auch für visuelle Beobachtung der erzeugten Bilder durch ein Okular – vorausgesetzt, dass die tatsächliche Umsetzung der Gerätekonzepte mit Auflösung und Kontrast auch die hohen Ansprüche für astronomische Geräte erfüllen!
Katadioptrische Systeme werden im normalen Foto-Bereich gegenüber reinen Linsen-Teleobjektiven wegen sehr geringer Baulänge und Gewicht geschätzt.
Der bedeutendste Unterschied der Foto-Optik (zum Einsatz als Wechselobjektiv an Systemkameras) gegenüber der astronomischen Optik ist, dass die Optiken hermetisch dicht abgeschlossen sein müssen. Ein Handhaben offener Spiegelsysteme als Wechselobjektiv im alltäglichen Einsatz wäre aus vielen Gründen undenkbar: Staubablagerung, Spritzwasser, Tau- und Belagsbildung, Beschädigung.
Das Scheitern des kommerziellen Projektes eines Nur-Spiegel-Schiefspieglers in den 1970er Jahren (Katoptaron) des deutschen Optik-Designers H.Makowsky mit einem völlig ofenen Spiegelobjektiv scheint diese Hypothes zu bestätigen. Das optische Konzept des Schiefspieglers (das es in dutzenden individuellen Varianten gibt) ist keinesfalls Schuld daran: es ist sehr erfolgreich und hoch geschätzt bis heute vor allem im Astro-Amateurbereich – aber auch bei wissenschaftlichen Anwendungen!
(Für astronomische Geräte gilt im Allgemeinen genau das Gegenteil bezüglich Offenheit: sie sind am besten so offen wie möglich, damit der Temperaturausgleich in die kälteren Nacht-Beobachtungszeiten hinein möglichst schnell und ohne Temperaturdifferenzen innerhalb des Gerätes vonstatten geht! Bei hermetisch geschlossenen Foto-Objektiven muss man sich der Gefahren durch Temperaturdifferenzen im Gerät für die optische Leistung deshalb immer bewusst sein!)
Rubrik III – das „Katadioptrische Dialyt“
Bevor wir uns den konkreten Fotoobjektiven zuwenden, müssen wir noch einen dritten Ausflug in die astronomische Optik machen. Der wird notwendig, wenn man sich die Linsenschnitte der verschiedenen katadioptrischen Foto-Objektive nur einmal flüchtig ansieht:
dabei fällt einem schnell auf, dass diese Systeme sich im Wesentlichen in zwei Gruppen unterteilen lassen:
Gruppe 1: Maksutov-Cassegrain-Systeme, leicht erkennbar an der nach vorne konkaven Frontlinse;
Bild 1: Linsenschnitt Foto-Objektiv auf Basis Maksutov-Cassegrain mit Meniskus-Frontlinse und ohne Mangin-Primärspiegel (Rubinar 300mm f/4,5 – Lichteintritt links). Bei diesem guten Objektiv verläßt man sich wegen des relativ großen Bildwinkels nicht mehr alleine auf den Maksutov-Meniskus! – Quelle: Spezifikationsblatt des Herstellers
Gruppe 2: Ähnlicher Cassegrain-Grundaufbau wie Gruppe 1, aber die große Frontlinse, die das System nach vorne abschließt, ist kein Meniskus.
Bild 2: Linsenschnitt Foto-Objektiv der „Gruppe 2“ (Zeiss Mirotar 500mm f/8 von 1997), Lichteintritt links) – Quelle: Zeiss-Spezifikations-Blatt Mirotar 500mm f8
Die eventuell erwartete Gruppe auf Basis des Schmidt-Cassegrain-Prinzips existiert nicht – ich habe jedenfalls dafür nur ein Foto-Objektiv-Beispiel gefunden: das Celestron 750mm f/6.3. Ein elementares SC-System ohne zusätzlichen Sub-Apertur-Korrektor von 1978. Auch Celestron ist danach wohl bald wieder bei seinen „Leisten“ geblieben – den astronomischen Teleskopen – bis heute.
Schon die beiden frühen ersten „Zeiss-Boliden“ 500mm f/4.0 (Ost) bzw. f/4.5 (West) und 1.000mm f/5.6 – Ost und West – sind Stellvertreter der beiden Gruppen 1 und 2:
Das mit Vorstellung 1961 frühere Carl-Zeiss-Jena-„Spiegelobjektiv“ (Ost) ist ein Vertreter der Gruppe 2 mit zwei Linsen in der vollen Apertur, die nicht Menisken sind; man könnte es wohl am ehesten als Houghton-Cassegrain-Variante bezeichnen.
Das 1963 herausgebrachte Zeiss-Oberkochen-Mirotar (West) ist ein Maksutov-Typ (es hat sogar zwei-Meniskuslinsen in der vollen Apertur! (Linsenschnitt des 1000mm f5.6 in diesem Link).
Des Rätsels Lösung: die sogenannten katadioptrischen Dialyte!
Schon sehr lange war in der astronomischen Optik ein wesentlich grundlegenderes optisches System der Kombination von Linse und Reflektor bekannt: schon Newton soll darüber nachgedacht haben (!) aber erstmals schriftlich dokumentiert wurde es 1814 als Patent von F.W. Hamilton – heute bekannt als das Hamilton-Teleskop.
Damit war das Grundprinzip des katadioptrischen Dialyts (auch Brachymedial genannt) in der Welt. Es wird nach gut 200 Jahren immer noch stetig und erfolgreich weiterentwickelt – und es ist die Grundlage aller katadioptrischen Foto-Objektive.
In der einfachsten Form besteht es aus zwei Linsen: einer vorderen Sammellinse aus Kronglas (Lichteintritt) und einer hinteren Meniskuslinse aus Flintglas, deren hintere (konvexe) Fläche verspiegelt ist. Dieses hintere Element wird man mehr als 60 Jahre später (nach Mangins Erfindung für Scheinwerfer-Spiegel 1876) auch als „Mangin-Spiegel“ bezeichnen … obwohl er 1814 bei Hamilton längst da war – als katoptischer Teil des Hamilton-Teleskops.
Vom Grundaufbau von Hamilton habe ich keine Creative Commons Abbildung verfügbar, aber hier in der „telescope-optics“-Website finden sie das Bild und eine ausführliche Beschreibung und zusätzlich Informationen über Folgeentwicklungen: die Schupman-Wiedemann-Busack-Riccardi-Houghten-Honders-Terebizh-Teleskope bzw. -Kameras.
Das Maksutov-Teleskop ist demnach nur EINE spezielle Variante der katadioptrischen Dialyte!
Maksutov hat seine Entdeckung der Meniskus-Korrektoren-Lösung selbst so beschrieben, dass ihm angesichts des Mangin-Spiegels die Idee kam, die Meniskus-Linse von der (sphärischen) Spiegel-Fläche zu lösen und nach vorne zur Apertur zu verschieben. M. suchte nämlich nach einer Lösung für ein robustes, abgedichtetes Teleskop für Schulen, das kostengünstig in Massen herstellbar sein würde! Da lag es natürlich auf der Hand, die Möglichkeit eines verspiegelten Zentralflecks auf der Rückseite des Meniskus als Cassegrain-Sekundärspiegel zu überprüfen … was dann erfolgreich war. Ob er auch Lösungen untersucht hat, für den Primärspiegel die Mangin-Lösung beizubehalten, ist mir nicht bekannt. Er soll insgesamt 46 Systemvarianten durchgerechnet haben … Ob ihm das Hamilton-Teleskop damals bekannt war, weiß ich nicht.
Sieht man sich die verschiedenen Lösungsvarianten der katadioptrischen Dialyte im Detail an, entdeckt man z.B., dass die Bauweise der Korrektorlinsen im Houghton-Teleskop dem Linsenschnitt in den Carl Zeiss Jena „Spiegelobjektiven“ (1961) entspricht.
Bild 3: katadioptrisches Dialyt nach Houghton, diese Korrektor-Bauform wird offensichtlich im Zeiss Jena Spiegelobjektiv verwendet – Quelle: Wikipedia – Autor: Rick Scott – https://creativecommons.org/licenses/by/3.0/
Gegenüber den „einfachen“ Frühformen reiner Spiegelteleskope verfolgte man beim katadioptrischen Dialyt von Anfang an zwei grundlegende Ziele:
- Die Verwendung von ausschließlich sphärischen Flächen bei Linsen- und Spiegelflächen (Kosten! Massenfertigung! Genauigkeit!);
- das Erreichen sehr großer Bildfelder mit hoher Bildgüte, z.B. für Astrographen-Kameras.
In der deutschen Wikipedia gibt es einen recht guten Übersichtsartikel über die katadioptrischen Dialyte – allerdings ohne Grafiken. Wer mehr Details braucht, dem empfehle ich nochmals die „telescope-optics“-Website.
Während in der Zeit vor dem 2. Weltkrieg bei astronomischen Teleskopen und Kameras bevorzugt asphärische Korrekturen zur Optimierung der Bildqualität zum Einsatz kamen (Beispiel: Ritchey-Chretien-Cassegrain!) wird in der jüngeren Zeit bevorzugt mit sphärischen Optik-Flächen gearbeitet. Terebizh argumentiert in seiner Veröffentlichung von 2007 damit, dass sphärische Flächen sehr viel präziser und reproduzierbarer hergestellt werden können (also nicht nur billiger sind). Die damit erzielte Bildqualität sei nachweislich besser. Hinzu kommt, dass man – spätestens ab den 1980er Jahren – neuerdings wesentlich mehr Freiheitsgrade im Bereich der Linsen-Korrektoren mit neuen Glassorten und effizienten Beschichtungen hat.
Hier gehts zu Teil III – zu den Fotoobjektiven von 1946 bis heute.
Herbert Börger, Berlin, 31. Oktober 2020